Chunxiang Wei, Tianyu Gao, Yu Xu, Wenjie Yang, Guangjian Dai, Ruiting Li, San E. Zhu, Richard K. K. Yuen, Wei Yang, Hongdian Lu
{"title":"Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins","authors":"Chunxiang Wei, Tianyu Gao, Yu Xu, Wenjie Yang, Guangjian Dai, Ruiting Li, San E. Zhu, Richard K. K. Yuen, Wei Yang, Hongdian Lu","doi":"10.1007/s10118-023-2932-4","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of high mechanical toughness, impact strength as well as excellent flame-retardant properties toward epoxy resins (EPs) have always been a dilemma. The inadequate overall performance of EPs severely restricts their sustainable utilization in engineering aspects over long-term. Herein, a new bio-based agent (diglycidyl ether of magnolol phosphine oxide, referred as DGEMP) derived from magnolol (classified as lignan), extracted from natural plants Magnolia officinalis, was successfully synthesized and further employed as a flame-retardant reactive additive to diglycidyl ether of bisphenol A (DGEBA). As demonstration, the composite resin, DGEBA/15DGEMP (15 wt% DGEMP), achieved an Underwriters Laboratories-94 V-0 rating with a high limiting oxygen index (LOI) value (41.5%). In cone calorimeter tests, it showed that heat release and smoke production were effectively inhibited during combustion, wherein the peak heat release rate (PHRR) value of DGEBA/15DGEMP was reduced by 50% compared to neat DGEBA. Additionally, it exhibited a superior tensile strength (82.8 MPa), toughness (5.11 MJ/m<sup>3</sup>) and impact strength (36.5 kJ/m<sup>2</sup>), much higher than that of neat DGEBA (49.7 MPa, 2.05 MJ/m<sup>3</sup> and 20.9 kJ/m<sup>2</sup>). Thus, it is highly anticipated that DGEMP imparts significantly improved mechanical and fire-retarded properties to conventional EPs, which holds a great potential to address the pressing challenges in EP thermosets industry.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"41 11","pages":"1733 - 1746"},"PeriodicalIF":4.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-023-2932-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
The integration of high mechanical toughness, impact strength as well as excellent flame-retardant properties toward epoxy resins (EPs) have always been a dilemma. The inadequate overall performance of EPs severely restricts their sustainable utilization in engineering aspects over long-term. Herein, a new bio-based agent (diglycidyl ether of magnolol phosphine oxide, referred as DGEMP) derived from magnolol (classified as lignan), extracted from natural plants Magnolia officinalis, was successfully synthesized and further employed as a flame-retardant reactive additive to diglycidyl ether of bisphenol A (DGEBA). As demonstration, the composite resin, DGEBA/15DGEMP (15 wt% DGEMP), achieved an Underwriters Laboratories-94 V-0 rating with a high limiting oxygen index (LOI) value (41.5%). In cone calorimeter tests, it showed that heat release and smoke production were effectively inhibited during combustion, wherein the peak heat release rate (PHRR) value of DGEBA/15DGEMP was reduced by 50% compared to neat DGEBA. Additionally, it exhibited a superior tensile strength (82.8 MPa), toughness (5.11 MJ/m3) and impact strength (36.5 kJ/m2), much higher than that of neat DGEBA (49.7 MPa, 2.05 MJ/m3 and 20.9 kJ/m2). Thus, it is highly anticipated that DGEMP imparts significantly improved mechanical and fire-retarded properties to conventional EPs, which holds a great potential to address the pressing challenges in EP thermosets industry.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.