Power Device Thermal Fault Tolerant Control of High-Power Three-Level Explosion-Proof Inverter Based on Holographic Equivalent Dual-Mode Modulation

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shi-Zhou Xu, Chun-jie Wang, Yu-feng Peng
{"title":"Power Device Thermal Fault Tolerant Control of High-Power Three-Level Explosion-Proof Inverter Based on Holographic Equivalent Dual-Mode Modulation","authors":"Shi-Zhou Xu, Chun-jie Wang, Yu-feng Peng","doi":"10.1155/2017/6961832","DOIUrl":null,"url":null,"abstract":"It is necessary for three-level explosion-proof inverters to have high thermal stability and good output characteristics avoiding problems caused by power devices, such as IGBT, so it becomes a hot and difficult research point using only one control algorithm to guarantee both output characteristics and high thermal stability. Firstly, the simplified SVPWM (Space Vector Pulse Width Modulation) algorithm was illustrated based on the NPC (neutral-point-clamped) three-level inverter, and then the quasi-square wave control was brought in and made into a novel holographic equivalent dual-mode modulation algorithm together with the simplified SVPWM. The holographic equivalent model was established to analyze the relative advantages comparing with the two single algorithms. Finally, the dynamic output and steady power device losses were analyzed, based on which the power loss calculation and system simulation were conducted as well. The experiment proved that the high-power three-level explosion-proof inverter has good output characteristics and thermal stability.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6961832","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/6961832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary for three-level explosion-proof inverters to have high thermal stability and good output characteristics avoiding problems caused by power devices, such as IGBT, so it becomes a hot and difficult research point using only one control algorithm to guarantee both output characteristics and high thermal stability. Firstly, the simplified SVPWM (Space Vector Pulse Width Modulation) algorithm was illustrated based on the NPC (neutral-point-clamped) three-level inverter, and then the quasi-square wave control was brought in and made into a novel holographic equivalent dual-mode modulation algorithm together with the simplified SVPWM. The holographic equivalent model was established to analyze the relative advantages comparing with the two single algorithms. Finally, the dynamic output and steady power device losses were analyzed, based on which the power loss calculation and system simulation were conducted as well. The experiment proved that the high-power three-level explosion-proof inverter has good output characteristics and thermal stability.
基于全息等效双模调制的大功率三电平防爆逆变器功率器件热容错控制
三电平防爆逆变器必须具有高的热稳定性和良好的输出特性,以避免IGBT等功率器件带来的问题,因此仅使用一种控制算法来保证输出特性和高的热稳定成为研究的热点和难点。首先,在NPC(neutral point clamp)三电平逆变器的基础上,给出了空间矢量脉宽调制(SVPWM)的简化算法,然后引入准方波控制,将其与简化的SVPWM一起构成一种新的全息等效双模调制算法。建立了全息等效模型,分析了两种算法的相对优势。最后,对功率器件的动态输出和稳态损耗进行了分析,并在此基础上进行了功率损耗计算和系统仿真。实验证明,该大功率三电平防爆逆变器具有良好的输出特性和热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信