Paper-based wearable ultra-sensitive strain sensors for fitness monitoring

IF 2.8 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aqsa Javaid, Muhammad Hamza Zulfiqar, Muhammad Shoaib Saleem, Muhammad Atif Khan, Muhammad Zubair, M. Q. Mehmood, Y. Massoud
{"title":"Paper-based wearable ultra-sensitive strain sensors for fitness monitoring","authors":"Aqsa Javaid, Muhammad Hamza Zulfiqar, Muhammad Shoaib Saleem, Muhammad Atif Khan, Muhammad Zubair, M. Q. Mehmood, Y. Massoud","doi":"10.1088/2058-8585/acc4d7","DOIUrl":null,"url":null,"abstract":"Emerging technologies that exhibit features of biodegradability and eco-friendliness are potential game changers. Paper is a cost-effective and easily available material that has proved itself a promising candidate for manufacturing strain sensors due to its easy integration into flexible electronics. In this work, an ultra-sensitive and highly stable strain sensor is presented. Easily available materials are used for sensors development and very easy and simple fabrication. The modified interdigital capacitor structure is fabricated on a simple printing paper, whereas copper tape is used as an electrode material. In the anticipated work, the milestones of high sensitivity, durability, and fast response time are achieved. The proposed flexible strain sensor is eco-friendly, bio-degradable, inexpensive, and responds well to applied strain. The proposed work exhibits a fast response time of 0.56 s. The high gauge factor value of 3040.26 and stability up to 5000 cycles. The proposed prototype has been also implemented on the human body for monitoring physical activities and fitness exercises. The proposed strain sensor is an outstandingly good option for assimilation into wearable systems like remote healthcare systems, electromechanical sensing, and human physical monitoring.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acc4d7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Emerging technologies that exhibit features of biodegradability and eco-friendliness are potential game changers. Paper is a cost-effective and easily available material that has proved itself a promising candidate for manufacturing strain sensors due to its easy integration into flexible electronics. In this work, an ultra-sensitive and highly stable strain sensor is presented. Easily available materials are used for sensors development and very easy and simple fabrication. The modified interdigital capacitor structure is fabricated on a simple printing paper, whereas copper tape is used as an electrode material. In the anticipated work, the milestones of high sensitivity, durability, and fast response time are achieved. The proposed flexible strain sensor is eco-friendly, bio-degradable, inexpensive, and responds well to applied strain. The proposed work exhibits a fast response time of 0.56 s. The high gauge factor value of 3040.26 and stability up to 5000 cycles. The proposed prototype has been also implemented on the human body for monitoring physical activities and fitness exercises. The proposed strain sensor is an outstandingly good option for assimilation into wearable systems like remote healthcare systems, electromechanical sensing, and human physical monitoring.
用于健康监测的纸质可穿戴超灵敏应变传感器
具有生物可降解性和生态友好性的新兴技术是潜在的游戏规则改变者。纸是一种具有成本效益且易于获得的材料,由于其易于集成到柔性电子设备中,因此已被证明是制造应变传感器的有前途的候选者。在这项工作中,提出了一种超灵敏、高稳定的应变传感器。易于获得的材料用于传感器的开发和非常容易和简单的制造。改进的数字间电容结构是在简单的印刷纸上制作的,而铜带则用作电极材料。在预期的工作中,实现了高灵敏度、耐用性和快速响应时间的里程碑。所提出的柔性应变传感器具有生态友好、可生物降解、价格低廉、对施加的应变响应良好等特点。该方法具有较快的响应时间(0.56 s)。测量系数高达3040.26,稳定性高达5000次循环。提议的原型也已在人体上实施,用于监测身体活动和健身锻炼。所提出的应变传感器是一个非常好的选择,可以融入可穿戴系统,如远程医疗系统、机电传感和人体物理监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flexible and Printed Electronics
Flexible and Printed Electronics MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
9.70%
发文量
101
期刊介绍: Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信