Christopher Krebs , Dennis Heyser , Bernhard Schweizer , Marcel Volz , Eberhard Abele , Matthias Weigold
{"title":"Numerical and experimental analysis of margin geometries of twist drills in deep hole machining operations","authors":"Christopher Krebs , Dennis Heyser , Bernhard Schweizer , Marcel Volz , Eberhard Abele , Matthias Weigold","doi":"10.1016/j.aime.2023.100120","DOIUrl":null,"url":null,"abstract":"<div><p>In deep hole machining operations with twist drills, whirling vibrations lead to a significant increase in hole diameter deviation and circularity error. In this article, a nonlinear physical model with special consideration of the contact area between the margins of the tool and the workpiece is developed to predict the hole circularity of drilling operations. Numerical simulations are used to study the geometry of the drilling tool to propose a new margin design. In an experimental study, it is shown that the newly developed margin geometry for twist drill tools decreases radial vibrations and leads to a significant improvement in hole diameter deviations and hole circularities.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"6 ","pages":"Article 100120"},"PeriodicalIF":3.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912923000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In deep hole machining operations with twist drills, whirling vibrations lead to a significant increase in hole diameter deviation and circularity error. In this article, a nonlinear physical model with special consideration of the contact area between the margins of the tool and the workpiece is developed to predict the hole circularity of drilling operations. Numerical simulations are used to study the geometry of the drilling tool to propose a new margin design. In an experimental study, it is shown that the newly developed margin geometry for twist drill tools decreases radial vibrations and leads to a significant improvement in hole diameter deviations and hole circularities.