Behavioural responses to horizontal vibrations of quasi-2D ideal granular beds: an experimental approach

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Moss, R. Glovnea
{"title":"Behavioural responses to horizontal vibrations of quasi-2D ideal granular beds: an experimental approach","authors":"J. Moss,&nbsp;R. Glovnea","doi":"10.1007/s10035-023-01354-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this experimental study, granular bed response to horizontal vibrations of various frequencies and amplitudes are examined with high-speed imaging. Ideal granular beds consisting of spherical glass beads are horizontally vibrated in a quasi-two-dimensional arrangement, firstly with homogeneous granular media and then with a ternary mixture to explore how bed response deviates with changes to material composition. Phenomena of note are the tendency for the homogeneous material to subdivide into discrete areas of crystalline lattice structures, bounded by non-crystalline lines of bead contacts, labelled in this paper as ‘shear lines’. Shear line failure arises as neighbouring crystalline areas slide relative to one another along their shared non-crystalline border, combining to form one larger crystalline area. Under vibration conditions where particle agitation and relative movement is high, sloshing occurs in the upper bed and triangular granular-gas regions form in the top corners. The ternary mixture also exhibits sloshing at low frequency and large amplitude, but the inhomogeneity of its composition prevents formation of ordered crystalline regions and shear lines, instead promoting low percolation and a jamming effect underneath the sloshing region. Surprisingly strong convective responses are induced in the inhomogeneous bed with more energetic vibrations. From the analysis of shear lines in the homogeneous beds, and of convection in the inhomogeneous beds, comparisons between homogeneous and inhomogeneous bed behaviour are drawn. Results are used to discuss how behavioural response of non-cohesive granular material to horizontal vibrations is ultimately tied to, and changes with, the geometric complexity of the internal packing structure. The concept of ‘geometric compatibility’ between constituent particle species in an inhomogeneous granular medium is proposed as an explanation for the low percolation and strong convective response to vibration.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01354-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01354-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this experimental study, granular bed response to horizontal vibrations of various frequencies and amplitudes are examined with high-speed imaging. Ideal granular beds consisting of spherical glass beads are horizontally vibrated in a quasi-two-dimensional arrangement, firstly with homogeneous granular media and then with a ternary mixture to explore how bed response deviates with changes to material composition. Phenomena of note are the tendency for the homogeneous material to subdivide into discrete areas of crystalline lattice structures, bounded by non-crystalline lines of bead contacts, labelled in this paper as ‘shear lines’. Shear line failure arises as neighbouring crystalline areas slide relative to one another along their shared non-crystalline border, combining to form one larger crystalline area. Under vibration conditions where particle agitation and relative movement is high, sloshing occurs in the upper bed and triangular granular-gas regions form in the top corners. The ternary mixture also exhibits sloshing at low frequency and large amplitude, but the inhomogeneity of its composition prevents formation of ordered crystalline regions and shear lines, instead promoting low percolation and a jamming effect underneath the sloshing region. Surprisingly strong convective responses are induced in the inhomogeneous bed with more energetic vibrations. From the analysis of shear lines in the homogeneous beds, and of convection in the inhomogeneous beds, comparisons between homogeneous and inhomogeneous bed behaviour are drawn. Results are used to discuss how behavioural response of non-cohesive granular material to horizontal vibrations is ultimately tied to, and changes with, the geometric complexity of the internal packing structure. The concept of ‘geometric compatibility’ between constituent particle species in an inhomogeneous granular medium is proposed as an explanation for the low percolation and strong convective response to vibration.

Graphical abstract

Abstract Image

准二维理想颗粒床水平振动的行为响应:一种实验方法
在这个实验研究中,颗粒床对不同频率和振幅的水平振动的响应被高速成像检测。首先以准二维方式水平振动由球形玻璃微珠组成的理想颗粒床,然后以三元混合物进行水平振动,探索床层响应随材料组成变化的变化规律。值得注意的现象是,均质材料倾向于细分为晶格结构的离散区域,由非晶珠接触线界定,在本文中称为“剪切线”。当邻近的晶体区域沿着它们共同的非晶体边界相对滑动,结合形成一个更大的晶体区域时,就会出现剪切线破坏。在颗粒搅拌和相对运动较大的振动条件下,上部床层发生晃动,上部角落形成三角形颗粒气区。三元混合物也表现出低频和大振幅的晃动,但其组成的不均匀性阻止了有序晶体区域和剪切线的形成,反而促进了低渗透和晃动区域下方的干扰效应。令人惊讶的是,在非均匀床层中,强烈的对流响应会被更强烈的振动所诱发。通过对均匀层的剪切线和非均匀层的对流线的分析,比较了均匀层和非均匀层的性质。结果用于讨论非粘性颗粒材料对水平振动的行为响应最终如何与内部填料结构的几何复杂性联系在一起并随其变化。提出了在非均匀颗粒介质中组成颗粒种之间的“几何相容性”概念,作为对振动的低渗透和强对流响应的解释。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信