Intelligent identification of oceanic eddies in remote sensing data via Dual-Pyramid UNet

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Nan Zhao , Baoxiang Huang , Xinmin Zhang , Linyao Ge , Ge Chen
{"title":"Intelligent identification of oceanic eddies in remote sensing data via Dual-Pyramid UNet","authors":"Nan Zhao ,&nbsp;Baoxiang Huang ,&nbsp;Xinmin Zhang ,&nbsp;Linyao Ge ,&nbsp;Ge Chen","doi":"10.1016/j.aosl.2023.100335","DOIUrl":null,"url":null,"abstract":"<div><p>Oceanic eddies are an omnipresent phenomenon of seawater flow and critical in transporting oceanic energy and material. Consequently, mastering and comprehending the characteristics of ocean eddies through detecting and recognizing eddies contributes to the understanding of oceanography. In traditional oceanography, a series of methods to identify eddies with physical or geometric characteristics have been developed. Deep learning frameworks have recently been applied in the eddy detection field. In this paper, a Dual-Pyramid UNet architecture that combines a pyramid split attention (PSA) module and atrous spatial pyramid pooling (ASPP) is proposed to identify oceanic eddies from remote sensing data. The encoder and decoder parts can effectively integrate low-level and high-level features, thus ensuring that feature information is not lost in large quantities after the nonlinear connection mode. In addition, the PSA and ASPP modules are introduced into the encoding, decoding, and skip connections to enhance feature extraction. Experiments were implemented in two typical study areas—the North Atlantic and South Atlantic. The recognition results demonstrate that Dual-Pyramid UNet can outperform four other competitive AI-based methods, especially for eddy edges and small-scale eddies.</p><p>摘要</p><p>海洋涡旋是大洋中重要的组成部分, 对海洋能量和物质的输送至关重要. 海洋涡旋的检测和表征无论是对于海洋气象学, 海洋声学还是海洋生物学等领域都具有重要的研究价值. 本文基于UNet架构, 并结合金字塔分割注意力(PSA)模块和空洞空间卷积池化金字塔(ASPP)构造了Dual-Pyramid UNet模型, 以平面异常和海表面温度数据中进行海洋涡旋的识别. 实验在北大西洋和南大西洋两个涡旋活跃区域进行并选用多个评价指标对识别结果进行评价以证明模型的优异性能.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100335"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000107","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oceanic eddies are an omnipresent phenomenon of seawater flow and critical in transporting oceanic energy and material. Consequently, mastering and comprehending the characteristics of ocean eddies through detecting and recognizing eddies contributes to the understanding of oceanography. In traditional oceanography, a series of methods to identify eddies with physical or geometric characteristics have been developed. Deep learning frameworks have recently been applied in the eddy detection field. In this paper, a Dual-Pyramid UNet architecture that combines a pyramid split attention (PSA) module and atrous spatial pyramid pooling (ASPP) is proposed to identify oceanic eddies from remote sensing data. The encoder and decoder parts can effectively integrate low-level and high-level features, thus ensuring that feature information is not lost in large quantities after the nonlinear connection mode. In addition, the PSA and ASPP modules are introduced into the encoding, decoding, and skip connections to enhance feature extraction. Experiments were implemented in two typical study areas—the North Atlantic and South Atlantic. The recognition results demonstrate that Dual-Pyramid UNet can outperform four other competitive AI-based methods, especially for eddy edges and small-scale eddies.

摘要

海洋涡旋是大洋中重要的组成部分, 对海洋能量和物质的输送至关重要. 海洋涡旋的检测和表征无论是对于海洋气象学, 海洋声学还是海洋生物学等领域都具有重要的研究价值. 本文基于UNet架构, 并结合金字塔分割注意力(PSA)模块和空洞空间卷积池化金字塔(ASPP)构造了Dual-Pyramid UNet模型, 以平面异常和海表面温度数据中进行海洋涡旋的识别. 实验在北大西洋和南大西洋两个涡旋活跃区域进行并选用多个评价指标对识别结果进行评价以证明模型的优异性能.

Abstract Image

利用双金字塔UNet智能识别遥感数据中的海洋涡旋
海洋涡旋是一种普遍存在的海水流动现象,对海洋能量和物质的输送起着至关重要的作用。因此,通过对涡旋的探测和识别,掌握和理解海洋涡旋的特征,有助于对海洋学的认识。在传统的海洋学中,已经发展了一系列具有物理或几何特征的涡流识别方法。深度学习框架最近在涡流检测领域得到了应用。本文提出了一种结合金字塔分割注意(PSA)模块和空间金字塔池(ASPP)的双金字塔UNet体系结构,用于从遥感数据中识别海洋涡旋。编码器和解码器部分可以有效地整合低级特征和高级特征,从而保证非线性连接方式后特征信息不会大量丢失。此外,在编码、解码和跳过连接中引入了PSA和ASPP模块,增强了特征提取。实验在北大西洋和南大西洋两个典型的研究区域进行。结果表明,双金字塔UNet的识别效果优于其他四种基于人工智能的方法,特别是在涡流边缘和小规模涡流方面。摘要海洋涡旋是大洋中重要的组成部分, 对海洋能量和物质的输送至关重要. 海洋涡旋的检测和表征无论是对于海洋气象学, 海洋声学还是海洋生物学等领域都具有重要的研究价值. 本文基于UNet架构,并结合金字塔分割注意力(PSA)模块和空洞空间卷积池化金字塔(ASPP)构造了Dual-Pyramid UNet模型,以平面异常和海表面温度数据中进行海洋涡旋的识别。实验在北大西洋和南大西洋两个涡旋活跃区域进行并选用多个评价指标对识别结果进行评价以证明模型的优异性能.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信