Loss of intraflagellar transport 140 in osteoblasts cripples bone fracture healing

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Qiqi Fan , Xuekui Wang , Mengqi Zhou , Yubei Chen , Dike Tao , Songxi Rong , Shuang Zhou , Hui Xue , Yao Sun
{"title":"Loss of intraflagellar transport 140 in osteoblasts cripples bone fracture healing","authors":"Qiqi Fan ,&nbsp;Xuekui Wang ,&nbsp;Mengqi Zhou ,&nbsp;Yubei Chen ,&nbsp;Dike Tao ,&nbsp;Songxi Rong ,&nbsp;Shuang Zhou ,&nbsp;Hui Xue ,&nbsp;Yao Sun","doi":"10.1016/j.fmre.2022.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>The indispensability of primary cilia in skeletal development has been widely recognized. We have previously shown that intraflagellar transport 140 (IFT140), a protein component of a bidirectional intraflagellar transport system required for ciliary function, controls bone development and dentinogenesis. However, it remains unknown whether IFT140 functionally contributes to bone fracture rehabilitation. Here an osteotomy-induced femoral fracture model was generated in <em>Ift140</em>-transgenic (<em>Ift140</em>-TG) and osteoblast-specific <em>Ift140</em>-conditional knockout (<em>Ift140</em>-cKO) mice. Micro-computed tomography, osteogenic induction, qualitative polymerase chain reaction, and toluidine blue and safranin O/fast green staining assays were used to characterize the dynamics of bone fracture healing from various perspectives. We found that IFT140 was relatively enriched in the bone callus and decreased in fracture-susceptible aged, or diabetic bones. <em>Ift140</em>-cKO mice had impaired osteogenic differentiation from bone mesenchymal stem cells, lower bone mass, and delayed fracture closure, whereas <em>Ift140</em>-TG mice had promising healing outcomes. Overall, our findings demonstrated for the first time that IFT140 has a beneficial role in fracture repair. Future investigation of the primary cilium in the context of aging and osteoporosis would certainly benefit patients at high risk of bone fractures.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 4","pages":"Pages 1795-1803"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822003715","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The indispensability of primary cilia in skeletal development has been widely recognized. We have previously shown that intraflagellar transport 140 (IFT140), a protein component of a bidirectional intraflagellar transport system required for ciliary function, controls bone development and dentinogenesis. However, it remains unknown whether IFT140 functionally contributes to bone fracture rehabilitation. Here an osteotomy-induced femoral fracture model was generated in Ift140-transgenic (Ift140-TG) and osteoblast-specific Ift140-conditional knockout (Ift140-cKO) mice. Micro-computed tomography, osteogenic induction, qualitative polymerase chain reaction, and toluidine blue and safranin O/fast green staining assays were used to characterize the dynamics of bone fracture healing from various perspectives. We found that IFT140 was relatively enriched in the bone callus and decreased in fracture-susceptible aged, or diabetic bones. Ift140-cKO mice had impaired osteogenic differentiation from bone mesenchymal stem cells, lower bone mass, and delayed fracture closure, whereas Ift140-TG mice had promising healing outcomes. Overall, our findings demonstrated for the first time that IFT140 has a beneficial role in fracture repair. Future investigation of the primary cilium in the context of aging and osteoporosis would certainly benefit patients at high risk of bone fractures.

Abstract Image

成骨细胞鞭毛内转运缺失导致骨折愈合受阻
初级纤毛在骨骼发育中的重要性已被广泛认识。我们之前的研究表明,纤毛功能所需的双向纤毛内运输系统的蛋白质组成部分鞭毛内运输140 (IFT140)控制着骨发育和牙本质形成。然而,IFT140是否在功能上有助于骨折康复尚不清楚。本研究在ift140转基因(Ift140-TG)和成骨细胞特异性ift140条件敲除(Ift140-cKO)小鼠中建立了截骨诱导的股骨骨折模型。显微计算机断层扫描、成骨诱导、定性聚合酶链反应、甲苯胺蓝和红花素O/快绿染色从不同角度表征骨折愈合的动态。我们发现IFT140在骨痂中相对丰富,而在易骨折的老年骨或糖尿病骨中减少。Ift140-cKO小鼠的骨间充质干细胞成骨分化受损,骨量降低,骨折愈合延迟,而Ift140-TG小鼠具有良好的愈合效果。总的来说,我们的研究结果首次证明IFT140在骨折修复中具有有益的作用。在老年和骨质疏松的背景下,对初级纤毛的进一步研究必将有利于骨折高危患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信