A. Bouvrée, A. D’Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y. Mevellec, B. Humbert
{"title":"Nanostructured and nanopatterned gold surfaces: application to the surface-enhanced Raman spectroscopy","authors":"A. Bouvrée, A. D’Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y. Mevellec, B. Humbert","doi":"10.1007/s13404-013-0127-4","DOIUrl":null,"url":null,"abstract":"<p>Surface-enhanced Raman spectroscopy (SERS) has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets. However, the SERS technique has trouble finding its industrial development, as was the case with the surface plasmon resonance technology. The main reason is the difficulty to produce stable, reproducible, and highly efficient substrates for quantitative measurements. In this paper, we report a method to obtain two-dimensional regular nanopatterns of gold nanoparticles (AuNPs). The resulting patterns were evaluated by SERS. Our bottom-up strategy was divided into two steps: (a) nanopatterning of the substrate by e-beam lithography and (b) electrostatic adsorption of AuNPs on functionalized substrates. This approach enabled us to highlight the optimal conditions to obtain monolayer, rows, or ring of AuNPs, with homogeneous distribution and high density (800 AuNPs/μm<sup>2</sup>). The nanostructure distributions on the substrates were displayed by scanning electron microscopy and atomic force microscopy images. Optical properties of our nanostructures were characterized by visible extinction spectra and by the measured enhancements of Raman scattering. Finally, we tried to demonstrate experimentally that, to observe a significant enhancement of SERS, the gold diffusers must be extremely closer. If electron beam lithography is a very attractive technique to perform reproducible SERS substrates, the realization of pattern needs a very high resolution, with distances between nanostructures probably of less than 20?nm.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":"46 4","pages":"283 - 290"},"PeriodicalIF":2.2000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-013-0127-4","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-013-0127-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 16
Abstract
Surface-enhanced Raman spectroscopy (SERS) has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets. However, the SERS technique has trouble finding its industrial development, as was the case with the surface plasmon resonance technology. The main reason is the difficulty to produce stable, reproducible, and highly efficient substrates for quantitative measurements. In this paper, we report a method to obtain two-dimensional regular nanopatterns of gold nanoparticles (AuNPs). The resulting patterns were evaluated by SERS. Our bottom-up strategy was divided into two steps: (a) nanopatterning of the substrate by e-beam lithography and (b) electrostatic adsorption of AuNPs on functionalized substrates. This approach enabled us to highlight the optimal conditions to obtain monolayer, rows, or ring of AuNPs, with homogeneous distribution and high density (800 AuNPs/μm2). The nanostructure distributions on the substrates were displayed by scanning electron microscopy and atomic force microscopy images. Optical properties of our nanostructures were characterized by visible extinction spectra and by the measured enhancements of Raman scattering. Finally, we tried to demonstrate experimentally that, to observe a significant enhancement of SERS, the gold diffusers must be extremely closer. If electron beam lithography is a very attractive technique to perform reproducible SERS substrates, the realization of pattern needs a very high resolution, with distances between nanostructures probably of less than 20?nm.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.