Ehsan Fatourehchi, Hamed Shahmohamadi, Ramin Rahmani, Homer Rahnejat, Mark Johnson, Ian Wilson
{"title":"Tribology of dust-stop seals of mixing machines","authors":"Ehsan Fatourehchi, Hamed Shahmohamadi, Ramin Rahmani, Homer Rahnejat, Mark Johnson, Ian Wilson","doi":"10.1002/ls.1632","DOIUrl":null,"url":null,"abstract":"<p>Dust stop seals are widely used in powder and rubber mixing industries. Design of the sealing system requires a continuous supply of pressurised lubricant, which is not recycled because of the risk of contamination. There is also the potential of large volume leakage of oil due to poor sealing, increasing operational costs and necessitating remedial measures to avoid environmental protection. Furthermore, the seal faces are prone to failure in relatively short periods of time due to reduced gap and lubricant leakage. The paper presents an analytical method and numerical predictions based on Reynolds equation under combined hydrodynamic and hydrostatic conditions with the entrant lubricant through hydraulically loaded feedholes. The validity of these methods is ascertained through comparison with a more complex but time-consuming solution of Navier–Stokes equations. The numerical predictions allow for determining the prevailing tribological contact conditions and assessing its suitability for evaluating the sealing performance of mixing machinery.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1632","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1632","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Dust stop seals are widely used in powder and rubber mixing industries. Design of the sealing system requires a continuous supply of pressurised lubricant, which is not recycled because of the risk of contamination. There is also the potential of large volume leakage of oil due to poor sealing, increasing operational costs and necessitating remedial measures to avoid environmental protection. Furthermore, the seal faces are prone to failure in relatively short periods of time due to reduced gap and lubricant leakage. The paper presents an analytical method and numerical predictions based on Reynolds equation under combined hydrodynamic and hydrostatic conditions with the entrant lubricant through hydraulically loaded feedholes. The validity of these methods is ascertained through comparison with a more complex but time-consuming solution of Navier–Stokes equations. The numerical predictions allow for determining the prevailing tribological contact conditions and assessing its suitability for evaluating the sealing performance of mixing machinery.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.