Introducing LASSO-type penalisation to generalised joint regression modelling for count data

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Hendrik van der Wurp, Andreas Groll
{"title":"Introducing LASSO-type penalisation to generalised joint regression modelling for count data","authors":"Hendrik van der Wurp,&nbsp;Andreas Groll","doi":"10.1007/s10182-021-00425-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose an extension of the versatile joint regression framework for bivariate count responses of the <span>R</span> package <span>GJRM</span> by Marra and Radice (R package version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The underlying estimation algorithm is based on a quadratic approximation of the penalty. The method enables variable selection and the corresponding estimates guarantee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimensional count response settings. The proposal’s empirical performance is investigated in a simulation study and an application on FIFA World Cup football data.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"107 1-2","pages":"127 - 151"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-021-00425-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00425-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we propose an extension of the versatile joint regression framework for bivariate count responses of the R package GJRM by Marra and Radice (R package version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The underlying estimation algorithm is based on a quadratic approximation of the penalty. The method enables variable selection and the corresponding estimates guarantee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimensional count response settings. The proposal’s empirical performance is investigated in a simulation study and an application on FIFA World Cup football data.

在计数数据的广义联合回归模型中引入lasso型惩罚
在这项工作中,我们提出了Marra和Radice (R包版本0.2-3,2020)对R包GJRM的双变量计数响应的通用联合回归框架的扩展,通过纳入(自适应)lasso型惩罚。底层估计算法基于惩罚的二次逼近。该方法允许变量选择,相应的估计保证收缩和稀疏性。因此,这种方法在高维计数响应设置中特别有用。通过仿真研究和对世界杯足球数据的应用,验证了该方法的实证效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信