{"title":"Implementasi Metode K-Means Clustering dalam Analisis Persebaran UMKM di Jawa Barat","authors":"N. Syifa, Resti Noor Fahmi","doi":"10.33633/joins.v6i2.5310","DOIUrl":null,"url":null,"abstract":"Usaha Mikro Kecil dan Menengah atau UMKM ialah usaha produktif yang sudah teruji membuka lapangan kerja dan menjadi penggerak roda perekonomian di Indonesia. Perlu adanya pengembangan potensi dalam melaksanakan UMKM dengan menganalisis strategi persebaran UMKM dan peningkatan jumlah UMKM. Penelitian ini akan menjelaskan cara mengimplementasikan metode k-means clustering untuk menganalisis persebaran UMKM sehingga diharapkan dapat menjadi perhatian bagi pemerintah atau institusi terkait dalam meningkatkan perekonomian UMKM di Jawa Barat. Clustering UMKM akan dibagi menjadi 3 bagian berdasarkan tingkat persebaran UMKM yaitu cluster 0 atau rendah memperoleh hasil 9 Kabupaten/Kota, cluster 1 atau sedang memperoleh hasil 15 Kabupaten/Kota, dan cluster 2 atau tinggi memperoleh hasil 3 Kabupaten/Kota. Hasil evaluasi clustering akan dibandingkan dengan 2 metode evaluasi yaitu silhouette coefficient yang menghasilkan nilai sebesar 0,73, sedangkan metode davies bouldin index (DBI) menghasilkan nilai sebesar 0,29. Dari hasil perbandingan kedua evaluasi cluster tersebut menunjukan hasil cluster dengan menerapkan algoritma k-means yang terbentuk baik. ","PeriodicalId":33057,"journal":{"name":"JOINS Journal of Information System","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINS Journal of Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33633/joins.v6i2.5310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Usaha Mikro Kecil dan Menengah atau UMKM ialah usaha produktif yang sudah teruji membuka lapangan kerja dan menjadi penggerak roda perekonomian di Indonesia. Perlu adanya pengembangan potensi dalam melaksanakan UMKM dengan menganalisis strategi persebaran UMKM dan peningkatan jumlah UMKM. Penelitian ini akan menjelaskan cara mengimplementasikan metode k-means clustering untuk menganalisis persebaran UMKM sehingga diharapkan dapat menjadi perhatian bagi pemerintah atau institusi terkait dalam meningkatkan perekonomian UMKM di Jawa Barat. Clustering UMKM akan dibagi menjadi 3 bagian berdasarkan tingkat persebaran UMKM yaitu cluster 0 atau rendah memperoleh hasil 9 Kabupaten/Kota, cluster 1 atau sedang memperoleh hasil 15 Kabupaten/Kota, dan cluster 2 atau tinggi memperoleh hasil 3 Kabupaten/Kota. Hasil evaluasi clustering akan dibandingkan dengan 2 metode evaluasi yaitu silhouette coefficient yang menghasilkan nilai sebesar 0,73, sedangkan metode davies bouldin index (DBI) menghasilkan nilai sebesar 0,29. Dari hasil perbandingan kedua evaluasi cluster tersebut menunjukan hasil cluster dengan menerapkan algoritma k-means yang terbentuk baik.