M. Karaaslan, G. K. Wong, Kevin Louis Soter, S. Hicking, M. Yousif
{"title":"A Well Flux Surveillance and Production Ramp-Up Method for Openhole Standalone Screen Completion","authors":"M. Karaaslan, G. K. Wong, Kevin Louis Soter, S. Hicking, M. Yousif","doi":"10.2118/201662-PA","DOIUrl":null,"url":null,"abstract":"\n Well surveillance requires practical models to balance the reward of maximizing production with the risk of ramping up production too much, which damages the completion. In this paper we present a method to monitor and ramp up production for openhole standalone screen (OH-SAS) completion. The objective is to optimize production using pressure transient analyses to assess the completion impairment and failure risks during the production ramp-up process. The flux model incorporates filter-cake pinholes, which are formed from nonuniform deposition and cleanup of filter cake during drilling and completion operations. Pinholes cause concentrated fluxes and increase completion failure risks. The method comprises three components, which are (1) determine pinhole properties from laboratory tests, (2) relate completion pressure drop of production through pinholes to pressure transient analyses, and (3) distribute fluxes in the standalone screen wellbore. Examples are presented and show that the completion pressure drop as a function of flow rate is nonlinear and higher with pinholes than without pinholes. By not incorporating pinholes, operations can potentially limit ramp-up. Flux distribution examples show that the largest impingement or radial velocity is at the top section of screen. The axial annular flow velocity or scouring velocity is two orders of magnitude larger than the screen impingement velocity. An integrated flux surveillance method for OH-SAS completion is presented for field applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/201662-PA","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Well surveillance requires practical models to balance the reward of maximizing production with the risk of ramping up production too much, which damages the completion. In this paper we present a method to monitor and ramp up production for openhole standalone screen (OH-SAS) completion. The objective is to optimize production using pressure transient analyses to assess the completion impairment and failure risks during the production ramp-up process. The flux model incorporates filter-cake pinholes, which are formed from nonuniform deposition and cleanup of filter cake during drilling and completion operations. Pinholes cause concentrated fluxes and increase completion failure risks. The method comprises three components, which are (1) determine pinhole properties from laboratory tests, (2) relate completion pressure drop of production through pinholes to pressure transient analyses, and (3) distribute fluxes in the standalone screen wellbore. Examples are presented and show that the completion pressure drop as a function of flow rate is nonlinear and higher with pinholes than without pinholes. By not incorporating pinholes, operations can potentially limit ramp-up. Flux distribution examples show that the largest impingement or radial velocity is at the top section of screen. The axial annular flow velocity or scouring velocity is two orders of magnitude larger than the screen impingement velocity. An integrated flux surveillance method for OH-SAS completion is presented for field applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.