A new class of Finitely Extensible Nonlinear Elastic FENE-P model obtained with a thermodynamical approach and the use of compressible natural configurations. Part I: Isothermal deformations

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
Juan Pablo Gomez-Constante, Liviu Iulian Palade
{"title":"A new class of Finitely Extensible Nonlinear Elastic FENE-P model obtained with a thermodynamical approach and the use of compressible natural configurations. Part I: Isothermal deformations","authors":"Juan Pablo Gomez-Constante,&nbsp;Liviu Iulian Palade","doi":"10.1016/j.apples.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent contribution to the fundamental understanding of polymer fluid dynamics, Khambhampati and Rajagopal (2021) established a connection between the natural configuration theory of Rajagopal and Srinivasa (2000) and the FENE-P model of Bird et al. (1987 [6]). In this paper we capitalize on the result in Khambhampati and Rajagopal (2021) and present a new class of FENE-P models using a more general Helmholtz potential within the conceptual framework of evolving natural configurations. To show its qualitative behavior, we exemplify with a classical Couette flow between infinite parallel plates. The model is capable of reproducing key features experimentally observed such as stress relaxation and the overshoot of the shear stress at the beginning of typical shear stress growth experiments. Comparison against the FENE-P type model obtained in Khambhampati and Rajagopal (2021) is used for comparison.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"15 ","pages":"Article 100138"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496823000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In a recent contribution to the fundamental understanding of polymer fluid dynamics, Khambhampati and Rajagopal (2021) established a connection between the natural configuration theory of Rajagopal and Srinivasa (2000) and the FENE-P model of Bird et al. (1987 [6]). In this paper we capitalize on the result in Khambhampati and Rajagopal (2021) and present a new class of FENE-P models using a more general Helmholtz potential within the conceptual framework of evolving natural configurations. To show its qualitative behavior, we exemplify with a classical Couette flow between infinite parallel plates. The model is capable of reproducing key features experimentally observed such as stress relaxation and the overshoot of the shear stress at the beginning of typical shear stress growth experiments. Comparison against the FENE-P type model obtained in Khambhampati and Rajagopal (2021) is used for comparison.

利用热力学方法和可压缩的自然构形,得到了一类新的有限可扩展非线性弹性FENE-P模型。第一部分:等温变形
在最近对聚合物流体动力学基本理解的贡献中,Khambhampati和Rajagopal(2021)在Rajagopa和Srinivasa(2000)的自然构型理论与Bird等人的FENE-P模型之间建立了联系。(1987[6])。在本文中,我们利用了Khambhampati和Rajagopal(2021)的结果,并在进化自然构型的概念框架内,使用更通用的亥姆霍兹势,提出了一类新的FENE-P模型。为了显示其定性行为,我们以无限平行板之间的经典Couette流为例。该模型能够再现实验观察到的关键特征,如典型剪切应力增长实验开始时的应力松弛和剪切应力过冲。使用与在Khambhampati和Rajagopal(2021)中获得的FENE-P型模型的比较进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信