Xinyu Yang , Boxin Geng , Juan Yan , Lin Lin , Xingli Zhao , Haoran Xiao , Haoquan Hu , Lingtong Ye , Wenqi lv , Wen Zeng
{"title":"The role of exosomes in regulation and application of vascular homeostasis and vascular grafts","authors":"Xinyu Yang , Boxin Geng , Juan Yan , Lin Lin , Xingli Zhao , Haoran Xiao , Haoquan Hu , Lingtong Ye , Wenqi lv , Wen Zeng","doi":"10.1016/j.smaim.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The global morbidity and mortality of cardiovascular diseases are increasing yearly, among which vascular diseases are the main cause of death. Traditional drugs have multiple limitations in the treatment of cardiovascular diseases, and there is a lack of effective means to treat cardiovascular diseases. Exosomes, as transmitters of important intercellular information, are involved in normal physiological and pathological processes of blood vessels and are closely associated with intimal hyperplasia, vascular sclerosis and thrombosis. Engineered exosomes are obtained by modification of natural membrane vesicles, and they have the advantages of targeting, extended duration of action and detectability, which can be an excellent alternative for cardiovascular disease treatment. There is an absence of reviews on how exosomes secreted by various cells affect disease regression when vascular homeostasis is disrupted and how engineered exosomes are regulated to maintain vascular homeostasis. Therefore, this paper reviews the regulatory mechanisms of exosomes in diseases related to vascular homeostasis, briefly describes the application of engineered exosomes in vessels, and explores the potential of engineered exosomes in the treatment of cardiovascular diseases, providing a new idea for the precise regulation of exosomes in the treatment of vascular diseases.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 538-551"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259018342300011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
The global morbidity and mortality of cardiovascular diseases are increasing yearly, among which vascular diseases are the main cause of death. Traditional drugs have multiple limitations in the treatment of cardiovascular diseases, and there is a lack of effective means to treat cardiovascular diseases. Exosomes, as transmitters of important intercellular information, are involved in normal physiological and pathological processes of blood vessels and are closely associated with intimal hyperplasia, vascular sclerosis and thrombosis. Engineered exosomes are obtained by modification of natural membrane vesicles, and they have the advantages of targeting, extended duration of action and detectability, which can be an excellent alternative for cardiovascular disease treatment. There is an absence of reviews on how exosomes secreted by various cells affect disease regression when vascular homeostasis is disrupted and how engineered exosomes are regulated to maintain vascular homeostasis. Therefore, this paper reviews the regulatory mechanisms of exosomes in diseases related to vascular homeostasis, briefly describes the application of engineered exosomes in vessels, and explores the potential of engineered exosomes in the treatment of cardiovascular diseases, providing a new idea for the precise regulation of exosomes in the treatment of vascular diseases.