Alpha band modulation caused by selective attention to music enables EEG classification.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-06-01 Epub Date: 2023-04-07 DOI:10.1007/s11571-023-09955-x
Kana Mizokuchi, Toshihisa Tanaka, Takashi G Sato, Yoshifumi Shiraki
{"title":"Alpha band modulation caused by selective attention to music enables EEG classification.","authors":"Kana Mizokuchi, Toshihisa Tanaka, Takashi G Sato, Yoshifumi Shiraki","doi":"10.1007/s11571-023-09955-x","DOIUrl":null,"url":null,"abstract":"<p><p>Humans are able to pay selective attention to music or speech in the presence of multiple sounds. It has been reported that in the speech domain, selective attention enhances the cross-correlation between the envelope of speech and electroencephalogram (EEG) while also affecting the spatial modulation of the alpha band. However, when multiple music pieces are performed at the same time, it is unclear how selective attention affects neural entrainment and spatial modulation. In this paper, we hypothesized that the entrainment to the attended music differs from that to the unattended music and that spatial modulation in the alpha band occurs in conjunction with attention. We conducted experiments in which we presented musical excerpts to 15 participants, each listening to two excerpts simultaneously but paying attention to one of the two. The results showed that the cross-correlation function between the EEG signal and the envelope of the unattended melody had a more prominent peak than that of the attended melody, contrary to the findings for speech. In addition, the spatial modulation in the alpha band was found with a data-driven approach called the common spatial pattern method. Classification of the EEG signal with a support vector machine identified attended melodies and achieved an accuracy of 100% for 11 of the 15 participants. These results suggest that selective attention to music suppresses entrainment to the melody and that spatial modulation of the alpha band occurs in conjunction with attention. To the best of our knowledge, this is the first report to detect attended music consisting of several types of music notes only with EEG.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09955-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Humans are able to pay selective attention to music or speech in the presence of multiple sounds. It has been reported that in the speech domain, selective attention enhances the cross-correlation between the envelope of speech and electroencephalogram (EEG) while also affecting the spatial modulation of the alpha band. However, when multiple music pieces are performed at the same time, it is unclear how selective attention affects neural entrainment and spatial modulation. In this paper, we hypothesized that the entrainment to the attended music differs from that to the unattended music and that spatial modulation in the alpha band occurs in conjunction with attention. We conducted experiments in which we presented musical excerpts to 15 participants, each listening to two excerpts simultaneously but paying attention to one of the two. The results showed that the cross-correlation function between the EEG signal and the envelope of the unattended melody had a more prominent peak than that of the attended melody, contrary to the findings for speech. In addition, the spatial modulation in the alpha band was found with a data-driven approach called the common spatial pattern method. Classification of the EEG signal with a support vector machine identified attended melodies and achieved an accuracy of 100% for 11 of the 15 participants. These results suggest that selective attention to music suppresses entrainment to the melody and that spatial modulation of the alpha band occurs in conjunction with attention. To the best of our knowledge, this is the first report to detect attended music consisting of several types of music notes only with EEG.

选择性注意音乐引起的α波段调制使脑电图分类成为可能
人类能够在多种声音中对音乐或语音进行选择性注意。据报道,在语音领域,选择性注意会增强语音包络和脑电图(EEG)之间的交叉相关性,同时也会影响阿尔法波段的空间调制。然而,当同时演奏多首音乐作品时,选择性注意如何影响神经夹带和空间调制尚不清楚。在本文中,我们假设注意到的音乐与未注意到的音乐的夹带不同,α波段的空间调制与注意同时发生。在实验中,我们向 15 名参与者播放了音乐选段,每个人同时聆听两段选段,但只注意其中一段。结果表明,未注意旋律的脑电信号与包络线之间的交叉相关函数的峰值比注意旋律的更突出,这与语音的研究结果相反。此外,还利用一种名为 "共同空间模式法 "的数据驱动方法发现了阿尔法波段的空间调制。通过支持向量机对脑电图信号进行分类,15 名参与者中有 11 人识别出了听过的旋律,准确率达到 100%。这些结果表明,对音乐的选择性注意会抑制对旋律的伴奏,α波段的空间调制与注意同时发生。据我们所知,这是第一份仅通过脑电图检测由几种音符组成的注意音乐的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信