{"title":"The Sun’s supergranulation","authors":"François Rincon, Michel Rieutord","doi":"10.1007/s41116-018-0013-5","DOIUrl":null,"url":null,"abstract":"<p>Supergranulation is a fluid-dynamical phenomenon taking place in the solar photosphere, primarily detected in the form of a vigorous cellular flow pattern with a typical horizontal scale of approximately 30–35?Mm, a dynamical evolution time of 24–48?h, a strong 300–400?m/s (rms) horizontal flow component and a much weaker 20–30?m/s vertical component. Supergranulation was discovered more than 60?years ago, however, explaining its physical origin and most important observational characteristics has proven extremely challenging ever since, as a result of the intrinsic multiscale, nonlinear dynamical complexity of the problem concurring with strong observational and computational limitations. Key progress on this problem is now taking place with the advent of twenty-first-century supercomputing resources and the availability of global observations of the dynamics of the solar surface with high spatial and temporal resolutions. This article provides an exhaustive review of observational, numerical and theoretical research on supergranulation, and discusses the current status of our understanding of its origin and dynamics, most importantly in terms of large-scale nonlinear thermal convection, in the light of a selection of recent findings.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"15 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-018-0013-5","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-018-0013-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 57
Abstract
Supergranulation is a fluid-dynamical phenomenon taking place in the solar photosphere, primarily detected in the form of a vigorous cellular flow pattern with a typical horizontal scale of approximately 30–35?Mm, a dynamical evolution time of 24–48?h, a strong 300–400?m/s (rms) horizontal flow component and a much weaker 20–30?m/s vertical component. Supergranulation was discovered more than 60?years ago, however, explaining its physical origin and most important observational characteristics has proven extremely challenging ever since, as a result of the intrinsic multiscale, nonlinear dynamical complexity of the problem concurring with strong observational and computational limitations. Key progress on this problem is now taking place with the advent of twenty-first-century supercomputing resources and the availability of global observations of the dynamics of the solar surface with high spatial and temporal resolutions. This article provides an exhaustive review of observational, numerical and theoretical research on supergranulation, and discusses the current status of our understanding of its origin and dynamics, most importantly in terms of large-scale nonlinear thermal convection, in the light of a selection of recent findings.
期刊介绍:
Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.