{"title":"Cooperative estimation and control of a diffusion-based spatiotemporal process using mobile sensors and actuators","authors":"Sheng Cheng, Derek A. Paley","doi":"10.1007/s10514-023-10105-9","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring and controlling a large-scale spatiotemporal process can be costly and dangerous for human operators, which can delegate the task to mobile robots for improved efficiency at a lower cost. The complex evolution of the spatiotemporal process and limited onboard resources of the robots motivate a holistic design of the robots’ actions to complete the tasks efficiently. This paper describes a cooperative framework for estimating and controlling a spatiotemporal process using a team of mobile robots that have limited onboard resources. We model the spatiotemporal process as a 2D diffusion equation that can characterize the intrinsic dynamics of the process with a partial differential equation (PDE). Measurement and actuation of the diffusion process are performed by mobile robots carrying sensors and actuators. The core of the framework is a nonlinear optimization problem, that simultaneously seeks the actuation and guidance of the robots to control the spatiotemporal process subject to the PDE dynamics. The limited onboard resources are formulated as inequality constraints on the actuation and speed of the robots. Extensive numerical studies analyze and evaluate the proposed framework using nondimensionalization and compare the optimal strategy to baseline strategies. The framework is demonstrated on an outdoor multi-quadrotor testbed using hardware-in-the-loop simulations.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 6","pages":"715 - 731"},"PeriodicalIF":3.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10105-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Monitoring and controlling a large-scale spatiotemporal process can be costly and dangerous for human operators, which can delegate the task to mobile robots for improved efficiency at a lower cost. The complex evolution of the spatiotemporal process and limited onboard resources of the robots motivate a holistic design of the robots’ actions to complete the tasks efficiently. This paper describes a cooperative framework for estimating and controlling a spatiotemporal process using a team of mobile robots that have limited onboard resources. We model the spatiotemporal process as a 2D diffusion equation that can characterize the intrinsic dynamics of the process with a partial differential equation (PDE). Measurement and actuation of the diffusion process are performed by mobile robots carrying sensors and actuators. The core of the framework is a nonlinear optimization problem, that simultaneously seeks the actuation and guidance of the robots to control the spatiotemporal process subject to the PDE dynamics. The limited onboard resources are formulated as inequality constraints on the actuation and speed of the robots. Extensive numerical studies analyze and evaluate the proposed framework using nondimensionalization and compare the optimal strategy to baseline strategies. The framework is demonstrated on an outdoor multi-quadrotor testbed using hardware-in-the-loop simulations.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.