{"title":"On adaptive confidence sets for the Wasserstein distances","authors":"N. Deo, Thibault Randrianarisoa","doi":"10.3150/22-bej1535","DOIUrl":null,"url":null,"abstract":"In the density estimation model, we investigate the problem of constructing adaptive honest confidence sets with radius measured in Wasserstein distance $W_p$, $p\\geq1$, and for densities with unknown regularity measured on a Besov scale. As sampling domains, we focus on the $d-$dimensional torus $\\mathbb{T}^d$, in which case $1\\leq p\\leq 2$, and $\\mathbb{R}^d$, for which $p=1$. We identify necessary and sufficient conditions for the existence of adaptive confidence sets with diameters of the order of the regularity-dependent $W_p$-minimax estimation rate. Interestingly, it appears that the possibility of such adaptation of the diameter depends on the dimension of the underlying space. In low dimensions, $d\\leq 4$, adaptation to any regularity is possible. In higher dimensions, adaptation is possible if and only if the underlying regularities belong to some interval of width at least $d/(d-4)$. This contrasts with the usual $L_p-$theory where, independently of the dimension, adaptation requires regularities to lie in a small fixed-width window. For configurations allowing these adaptive sets to exist, we explicitly construct confidence regions via the method of risk estimation, centred at adaptive estimators. Those are the first results in a statistical approach to adaptive uncertainty quantification with Wasserstein distances. Our analysis and methods extend more globally to weak losses such as Sobolev norm distances with negative smoothness indices.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1535","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
In the density estimation model, we investigate the problem of constructing adaptive honest confidence sets with radius measured in Wasserstein distance $W_p$, $p\geq1$, and for densities with unknown regularity measured on a Besov scale. As sampling domains, we focus on the $d-$dimensional torus $\mathbb{T}^d$, in which case $1\leq p\leq 2$, and $\mathbb{R}^d$, for which $p=1$. We identify necessary and sufficient conditions for the existence of adaptive confidence sets with diameters of the order of the regularity-dependent $W_p$-minimax estimation rate. Interestingly, it appears that the possibility of such adaptation of the diameter depends on the dimension of the underlying space. In low dimensions, $d\leq 4$, adaptation to any regularity is possible. In higher dimensions, adaptation is possible if and only if the underlying regularities belong to some interval of width at least $d/(d-4)$. This contrasts with the usual $L_p-$theory where, independently of the dimension, adaptation requires regularities to lie in a small fixed-width window. For configurations allowing these adaptive sets to exist, we explicitly construct confidence regions via the method of risk estimation, centred at adaptive estimators. Those are the first results in a statistical approach to adaptive uncertainty quantification with Wasserstein distances. Our analysis and methods extend more globally to weak losses such as Sobolev norm distances with negative smoothness indices.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.