Taya Ko Saothayanun, Thipwipa Tip Sirinakorn, Makoto Ogawa
{"title":"Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues","authors":"Taya Ko Saothayanun, Thipwipa Tip Sirinakorn, Makoto Ogawa","doi":"10.1007/s11708-021-0776-6","DOIUrl":null,"url":null,"abstract":"<div><p>Uses of layered alkali titanates (A<sub>2</sub>Ti<sub><i>n</i></sub>O<sub>2<i>n</i>+1</sub>; Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>, K<sub>2</sub>Ti<sub>4</sub>O<sub>9</sub>, and Cs<sub>2</sub>Ti<sub>5</sub>O<sub>11</sub>) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"15 3","pages":"631 - 655"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-021-0776-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5
Abstract
Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue