Bethany J. Macdonald, Tilman M. Davies, Martin L. Hazelton
{"title":"Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes","authors":"Bethany J. Macdonald, Tilman M. Davies, Martin L. Hazelton","doi":"10.1016/j.spasta.2023.100759","DOIUrl":null,"url":null,"abstract":"<div><p><span>Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation<span> of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical </span></span>proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"56 ","pages":"Article 100759"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.