{"title":"Gross domestic product growth rate analyzing based on price indexes, import and export factors","authors":"Biljana Petković, B. Kuzman, M. Barjaktarević","doi":"10.5937/ekopolj2002405p","DOIUrl":null,"url":null,"abstract":"Economic development could be presented by gross domestic product to show how different factors affect the development. Gross domestic product could be affected by different nonlinear factors in positive or negative way. Hence it is suitable to apply artificial intelligence techniques in order to track the gross domestic product variation in depend on the factors. AI techniques require only input and output data pairs in order to catch the output variations based on the input factors. Therefore in this study adaptive neuro fuzzy inference system was applied in order to select the most relevant factors for gross domestic product growth rate. These factors are whole sale price index, consumer price index in urban areas, consumer price index in rural areas, state per capita income, exports, import and industry income. Results shown that the whole sale price index has the highest relevance on the gross domestic product growth rate.","PeriodicalId":45567,"journal":{"name":"Ekonomika Poljoprivreda-Economics of Agriculture","volume":"67 1","pages":"405-415"},"PeriodicalIF":0.8000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ekonomika Poljoprivreda-Economics of Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/ekopolj2002405p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 4
Abstract
Economic development could be presented by gross domestic product to show how different factors affect the development. Gross domestic product could be affected by different nonlinear factors in positive or negative way. Hence it is suitable to apply artificial intelligence techniques in order to track the gross domestic product variation in depend on the factors. AI techniques require only input and output data pairs in order to catch the output variations based on the input factors. Therefore in this study adaptive neuro fuzzy inference system was applied in order to select the most relevant factors for gross domestic product growth rate. These factors are whole sale price index, consumer price index in urban areas, consumer price index in rural areas, state per capita income, exports, import and industry income. Results shown that the whole sale price index has the highest relevance on the gross domestic product growth rate.