Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL
Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun
{"title":"Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb","authors":"Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun","doi":"10.1115/1.4062620","DOIUrl":null,"url":null,"abstract":"\n In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4062620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.
一种新型柔性凹入式蜂窝的弯曲性能研究
为了进一步提高传统凹入式(re)蜂窝的弯曲性能,通过在re蜂窝中添加额外的连接壁结构,提出了一种新型的膨胀蜂窝结构,称为re-L蜂窝。通过分析、数值和实验模型,全面研究了新型RE-L蜂窝的弯曲行为,包括线弹性变形下的性能和大变形下的弯曲行为。结果表明,由于附加结构的高度柔性性能,所提出的RE-L蜂窝显著提高了x方向的弯曲柔度,其中弯曲刚度和最大弯曲力分别仅为RE蜂窝的23%和29.4%。此外,该附加结构明显提高了原胀形蜂窝的可设计性和正交异性。总之,所提出的RE-L显示出改进的弯曲性能,这在未来的研究和相关应用中值得更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信