Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
D. Ganguly, R. Ray, N. Majumdar, C. Chowdhury, T. K. Jana
{"title":"Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest","authors":"D. Ganguly,&nbsp;R. Ray,&nbsp;N. Majumdar,&nbsp;C. Chowdhury,&nbsp;T. K. Jana","doi":"10.1007/s10874-018-9382-3","DOIUrl":null,"url":null,"abstract":"<p>Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H<sub>2</sub>S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H<sub>2</sub>S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59?±?0.02?ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26?±?0.01?ppb. This forest acted as a perennial source of H<sub>2</sub>S and the sediment-air emission flux ranged between 1213?±?276?μg?S?m<sup>?2</sup> d<sup>?1</sup>(December) and 457?±?114?μg?S?m<sup>?2</sup> d<sup>?1</sup> (August) with an annual mean of 768?±?240?μg?S?m<sup>?2</sup>d<sup>?1</sup>. The total annual emissions of H<sub>2</sub>S from the Indian Sundarban were estimated to be 1.2?±?0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74?μg?m<sup>?3</sup> followed by the coarse mode (5.18?μg?m<sup>?3</sup>) and nucleation mode (1.18?μg?m<sup>?3</sup>). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H<sub>2</sub>S flux and different modes of NSS indicated the likely link between H<sub>2</sub>S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H<sub>2</sub>S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"75 3","pages":"319 - 333"},"PeriodicalIF":3.0000,"publicationDate":"2018-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-018-9382-3","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-018-9382-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H2S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H2S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59?±?0.02?ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26?±?0.01?ppb. This forest acted as a perennial source of H2S and the sediment-air emission flux ranged between 1213?±?276?μg?S?m?2 d?1(December) and 457?±?114?μg?S?m?2 d?1 (August) with an annual mean of 768?±?240?μg?S?m?2d?1. The total annual emissions of H2S from the Indian Sundarban were estimated to be 1.2?±?0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74?μg?m?3 followed by the coarse mode (5.18?μg?m?3) and nucleation mode (1.18?μg?m?3). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H2S flux and different modes of NSS indicated the likely link between H2S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H2S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.

Abstract Image

生物成因的硫化氢排放和非海洋硫酸盐气溶胶在印度孙德班红树林
在世界上最大的红树林生态系统印度孙德尔本斯,研究了大气硫化氢浓度的时间变化及其生物圈-大气交换。这些结果用于了解H2S通量在不同大小类别(如积聚、成核和粗模式)的大气气溶胶形成中的可能贡献。孙德班红树林大气中硫化氢(H2S)混合比在季风后季节(10 ~ 1月)最大,平均值为0.59±0.02?季风前(2 ~ 5月)最小,平均值为0.26±0.01 ppb。该森林是H2S的多年生来源,沉积物-空气排放通量在1213±276 μg / S之间。2月1日(12月)和457±114 μg S?m?2 d ?1(8月),年平均值为768±240 μg?S?m? d?1。印度孙德班地区H2S年排放总量约为1.2±0.6 Tg s,非海盐硫酸盐的积累模式更为丰富,平均负荷为5.74 μg / m。其次是粗态(5.18 μg μ m?3)和成核态(1.18 μg μ m?3)。非海盐硫酸盐气溶胶对总硫酸盐气溶胶的相对贡献以成核模式最高(83%),其次是累积模式(73%)和粗粒模式(58%)。H2S通量与不同模式的NSS呈显著正相关,表明H2S(非海盐硫酸盐的主要前体)与非海盐硫酸盐气溶胶颗粒之间可能存在联系。红树林H2S排放的增加可能导致气溶胶和相关云反照率的NSS增强,以及到达孙德班红树林的入射太阳辐射量的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信