Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gal Dor
{"title":"Exotic Monoidal Structures and Abstractly Automorphic Representations for \n$\\mathrm {GL}(2)$","authors":"Gal Dor","doi":"10.1017/fmp.2023.18","DOIUrl":null,"url":null,"abstract":"Abstract We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for \n${\\mathrm {GL}}(2)$\n . We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of \n${\\mathrm {GL}}(2)$\n -modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for \n${\\mathrm {GL}}(2)$\n , and demonstrate its basic properties. This paper is a part of the author’s thesis [4].","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for ${\mathrm {GL}}(2)$ . We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of ${\mathrm {GL}}(2)$ -modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for ${\mathrm {GL}}(2)$ , and demonstrate its basic properties. This paper is a part of the author’s thesis [4].
$\ mathm {GL}(2)$的奇异单形结构和抽象自同构表示
摘要我们使用θ对应关系来研究${\mathrm{GL}}(2)$的Godement–Jacquet和Jacquet–Langlands L-函数之间的等价性。我们证明了所得到的比较实际上是${\mathrm{GL}}(2)$-模范畴上奇异对称单体结构的一个表达式。此外,这使我们能够构造抽象自同构表示的阿贝尔范畴,其不可约对象是通常的自同构表示。我们推测这一范畴是研究${\mathrm{GL}}(2)$的自同构现象的自然环境,并证明了它的基本性质。本文是作者论文[4]的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信