{"title":"New ursolic acid derivatives bearing 1,2,3-triazole moieties: design, synthesis and anti-inflammatory activity in vitro and in vivo","authors":"Tian-Yi Zhang, Chun-Shi Li, Li-Ting Cao, Xue-Qian Bai, Dong-Hai Zhao, Si-Mei Sun","doi":"10.1007/s11030-021-10236-0","DOIUrl":null,"url":null,"abstract":"<p>In order to discover novel anti-inflammatory agents, three series of compounds obtained by appending 1,2,3-triazole moieties on ursolic acid were designed and synthesized. All compounds have been screened for their anti-inflammatory activity by using an ear edema model. The potent anti-inflammatory compound was subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assays. In general, the derivatives were found to be potent anti-inflammatory activity. Especially, the compound <b>11b</b> exhibited the strongest activity of all of the compounds prepared, with 82.81% inhibition after intraperitoneal administration, which was better than celecoxib as a positive control. Molecular docking results unclose the rationale for the interaction of the compound <b>11b</b> with COX-2 enzyme. Further studies revealed that compound <b>11b</b> exhibited effective COX-2 inhibitory activity, with half-maximal inhibitor concentration (IC<sub>50</sub>) value of 1.16 µM and selectivity index (SI = 64.66) value close to that of celecoxib (IC<sub>50</sub> = 0.93 µM, SI = 65.47). Taken together, these results could suggest a promising chemotype for development of new COX-2-targeting anti-inflammatory agent.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"26 2","pages":"1129 - 1139"},"PeriodicalIF":3.8000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11030-021-10236-0","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11030-021-10236-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 13
Abstract
In order to discover novel anti-inflammatory agents, three series of compounds obtained by appending 1,2,3-triazole moieties on ursolic acid were designed and synthesized. All compounds have been screened for their anti-inflammatory activity by using an ear edema model. The potent anti-inflammatory compound was subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assays. In general, the derivatives were found to be potent anti-inflammatory activity. Especially, the compound 11b exhibited the strongest activity of all of the compounds prepared, with 82.81% inhibition after intraperitoneal administration, which was better than celecoxib as a positive control. Molecular docking results unclose the rationale for the interaction of the compound 11b with COX-2 enzyme. Further studies revealed that compound 11b exhibited effective COX-2 inhibitory activity, with half-maximal inhibitor concentration (IC50) value of 1.16 µM and selectivity index (SI = 64.66) value close to that of celecoxib (IC50 = 0.93 µM, SI = 65.47). Taken together, these results could suggest a promising chemotype for development of new COX-2-targeting anti-inflammatory agent.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;