Restoration of seagrass habitats: Effects of artificial and natural sediments on the development of transplanted eelgrass (Zostera marina)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ingvild Fladvad Størdal , Embla Vildalen Uleberg , Diress Tsegaye , Jonathan E. Colman
{"title":"Restoration of seagrass habitats: Effects of artificial and natural sediments on the development of transplanted eelgrass (Zostera marina)","authors":"Ingvild Fladvad Størdal ,&nbsp;Embla Vildalen Uleberg ,&nbsp;Diress Tsegaye ,&nbsp;Jonathan E. Colman","doi":"10.1016/j.aquabot.2023.103677","DOIUrl":null,"url":null,"abstract":"<div><p>Near-shore areas face multiple stressors, effects of climate change, coastal construction and contamination. Although capping the seabed in these areas with mineral masses can reduce the impact of legacy contaminants in sediment, it can also result in the loss of flora and sessile fauna, both of which are vital components of near-shore ecosystems. Eelgrass (<em>Zostera marina</em>) is essential to marine near-shore areas as it supports biodiversity and mitigates the effects of climate change. Therefore, it would be beneficial to modify the top layer of caps to facilitate the reestablishment of these ecosystems when capping near-shore areas. This study describes results from an in situ<em>,</em> six-month field experiment conducted to compare increase in leaf length over the growing season and survival of eelgrass transplanted in two commercially available substrates (Natural sand and Crushed stone) and indigenous sediment (i.e., indigenous control sediment) in a capping project in Horten Inner harbour, Norway. Similar leaf length increase was found in Natural sand and Indigenous control sediment, both significantly higher compared to Crushed stone substrate. Survival was highest in our case in the Indigenous control sediment (120 %), with no significant difference between Crushed stone (20 %) and Natural sand substrates (25 %). These findings emphasize the importance of selecting appropriate substrate for successful seagrass restoration.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023000621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-shore areas face multiple stressors, effects of climate change, coastal construction and contamination. Although capping the seabed in these areas with mineral masses can reduce the impact of legacy contaminants in sediment, it can also result in the loss of flora and sessile fauna, both of which are vital components of near-shore ecosystems. Eelgrass (Zostera marina) is essential to marine near-shore areas as it supports biodiversity and mitigates the effects of climate change. Therefore, it would be beneficial to modify the top layer of caps to facilitate the reestablishment of these ecosystems when capping near-shore areas. This study describes results from an in situ, six-month field experiment conducted to compare increase in leaf length over the growing season and survival of eelgrass transplanted in two commercially available substrates (Natural sand and Crushed stone) and indigenous sediment (i.e., indigenous control sediment) in a capping project in Horten Inner harbour, Norway. Similar leaf length increase was found in Natural sand and Indigenous control sediment, both significantly higher compared to Crushed stone substrate. Survival was highest in our case in the Indigenous control sediment (120 %), with no significant difference between Crushed stone (20 %) and Natural sand substrates (25 %). These findings emphasize the importance of selecting appropriate substrate for successful seagrass restoration.

海草栖息地的恢复:人工和天然沉积物对移植鳗草(Zostera marina)发育的影响
近岸地区面临着多种压力因素,包括气候变化、海岸建设和污染的影响。虽然用矿物块覆盖这些地区的海床可以减少沉积物中遗留污染物的影响,但它也可能导致植物群和无根动物群的损失,这两者都是近岸生态系统的重要组成部分。大叶藻(Zostera marina)对海洋近岸地区至关重要,因为它支持生物多样性并减轻气候变化的影响。因此,在近岸地区封顶时,对封顶层进行调整有利于这些生态系统的重建。本研究描述了一项为期六个月的现场实验的结果,该实验在挪威霍顿内港的一个封顶项目中,比较了大叶藻在生长季节叶片长度的增加和移植在两种商业上可用的基质(天然砂和碎石)和本地沉积物(即本地对照沉积物)上的存活率。天然砂和土生对照底泥的叶长增加幅度相似,均显著高于碎石底泥。在我们的研究中,原生对照沉积物的存活率最高(120%),碎石(20%)和天然砂基质(25%)之间没有显著差异。这些发现强调了选择合适的基质对成功恢复海草的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信