Spectrality in Convex Sequential Effect Algebras

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Anna Jenčová, Sylvia Pulmannová
{"title":"Spectrality in Convex Sequential Effect Algebras","authors":"Anna Jenčová,&nbsp;Sylvia Pulmannová","doi":"10.1007/s10773-023-05431-8","DOIUrl":null,"url":null,"abstract":"<div><p>For convex and sequential effect algebras, we study spectrality in the sense of Foulis. We show that under additional conditions (strong archimedeanity, closedness in norm and a certain monotonicity property of the sequential product), such effect algebra is spectral if and only if every maximal commutative subalgebra is monotone <span>\\(\\sigma \\)</span>-complete. Two previous results on existence of spectral resolutions in this setting are shown to require stronger assumptions.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10773-023-05431-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05431-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For convex and sequential effect algebras, we study spectrality in the sense of Foulis. We show that under additional conditions (strong archimedeanity, closedness in norm and a certain monotonicity property of the sequential product), such effect algebra is spectral if and only if every maximal commutative subalgebra is monotone \(\sigma \)-complete. Two previous results on existence of spectral resolutions in this setting are shown to require stronger assumptions.

凸序列效应代数的谱性
对于凸效应代数和序列效应代数,我们研究了傅里叶意义上的谱性。证明了在附加条件下(强阿基米德性、范数闭合性和序列积的一定单调性),当且仅当每个极大交换子代数都是单调\(\sigma \) -完全时,这种效应代数是谱的。在这种情况下,先前关于光谱分辨率存在的两个结果表明需要更强的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信