N. Nordbäck, Nikolas Ovaskainen, M. Markovaara‐Koivisto, P. Skyttä, A. Ojala, Jon Engström, C. Nixon
{"title":"Multiscale mapping and scaling analysis of the censored brittle structural framework within the crystalline bedrock of southern Finland","authors":"N. Nordbäck, Nikolas Ovaskainen, M. Markovaara‐Koivisto, P. Skyttä, A. Ojala, Jon Engström, C. Nixon","doi":"10.17741/bgsf/95.1.001","DOIUrl":null,"url":null,"abstract":"Fracture studies commonly lack data for the length range between 10 m to 1 km. For this reason, scaling laws are required to extrapolate fracture properties, for example in discrete fracture network models. This study focused on analysis and correlation of topology, orientation and length distribution of multiscale fracture datasets to assess their scalability. The used datasets comprise UAV-derived photogrammetric models from natural outcrops and lineaments mapped using airborne LiDAR, bathymetry and aerogeophysical data, in several contrasting scales and resolutions. This study highlights challenges in acquiring uncensored and coherent brittle structural datasets from source data characterized by a large span of resolutions between the remote sensing datasets and models of the fractured outcrop. In specific, collected data was found to be potentially biased and affected by uncertainties related to both the censoring by sedimentary cover and the scale of observation. Our results revealed differences between lineament and outcrop fracture orientations, as well as difficulties in assessing topological parameters from lineament datasets. The 1:200000 resolution was found best suited to the mapping of lineament length and resulted in a length distribution power law exponent of -1.92. For outcrop fractures that are less than 2 m long, the lognormal length distribution provided the only good fit to our data, while the longer outcrop fractures fitted relatively well with a power law exponent of -2.26.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17741/bgsf/95.1.001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Fracture studies commonly lack data for the length range between 10 m to 1 km. For this reason, scaling laws are required to extrapolate fracture properties, for example in discrete fracture network models. This study focused on analysis and correlation of topology, orientation and length distribution of multiscale fracture datasets to assess their scalability. The used datasets comprise UAV-derived photogrammetric models from natural outcrops and lineaments mapped using airborne LiDAR, bathymetry and aerogeophysical data, in several contrasting scales and resolutions. This study highlights challenges in acquiring uncensored and coherent brittle structural datasets from source data characterized by a large span of resolutions between the remote sensing datasets and models of the fractured outcrop. In specific, collected data was found to be potentially biased and affected by uncertainties related to both the censoring by sedimentary cover and the scale of observation. Our results revealed differences between lineament and outcrop fracture orientations, as well as difficulties in assessing topological parameters from lineament datasets. The 1:200000 resolution was found best suited to the mapping of lineament length and resulted in a length distribution power law exponent of -1.92. For outcrop fractures that are less than 2 m long, the lognormal length distribution provided the only good fit to our data, while the longer outcrop fractures fitted relatively well with a power law exponent of -2.26.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.