C. Thiberville, Yanfang Wang, P. Waltrich, W. Williams, S. Kam
{"title":"Modeling of Smart Pigging for Pipeline Leak Detection","authors":"C. Thiberville, Yanfang Wang, P. Waltrich, W. Williams, S. Kam","doi":"10.2118/198648-pa","DOIUrl":null,"url":null,"abstract":"\n Although leak incidents continue, a pipeline remains the most reliable mode of transportation within the oil and gas industry. It becomes even more important today because the projection for new pipelines is expected to increase by 1 billion barrels of oil equivalent (BOE) through 2035. In addition, increasing the number and length of subsea tiebacks faces new challenges in terms of data acquisition, monitoring, analysis, and remedial actions. Passive leak-detection methods commonly used in the industry have been successful with some limitations, in that they often cannot detect small leaks and seeps. In addition to a thorough review of related topics, this study investigates how to create a framework for a smart pigging technique for pipeline leak detection as an active leak-detection method.\n Numerical modeling of smart pigging for leak detection requires two crucial components: detailed mathematical descriptions for fluid-solid and solid-solid interactions around pig and network modeling for the calculation of pressure and rate along the pipeline using iterative algorithms. The first step of this study is to build a numerical model that shows the motion of a pig along the pipeline with no leak (i.e., at a given injection rate, a pig first accelerates until it reaches its terminal velocity, beyond which the pig moves at a constant velocity). The second step is to construct a network model that consists of two pipeline segments (one upstream and the other downstream of the leak location) through which the pig travels and at the junction of which fluid leak occurs. By putting these multiple mechanisms together and using resulting pressure signatures, this study presents a new method to predict the location and size of a leak in the pipeline.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/198648-pa","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/198648-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although leak incidents continue, a pipeline remains the most reliable mode of transportation within the oil and gas industry. It becomes even more important today because the projection for new pipelines is expected to increase by 1 billion barrels of oil equivalent (BOE) through 2035. In addition, increasing the number and length of subsea tiebacks faces new challenges in terms of data acquisition, monitoring, analysis, and remedial actions. Passive leak-detection methods commonly used in the industry have been successful with some limitations, in that they often cannot detect small leaks and seeps. In addition to a thorough review of related topics, this study investigates how to create a framework for a smart pigging technique for pipeline leak detection as an active leak-detection method.
Numerical modeling of smart pigging for leak detection requires two crucial components: detailed mathematical descriptions for fluid-solid and solid-solid interactions around pig and network modeling for the calculation of pressure and rate along the pipeline using iterative algorithms. The first step of this study is to build a numerical model that shows the motion of a pig along the pipeline with no leak (i.e., at a given injection rate, a pig first accelerates until it reaches its terminal velocity, beyond which the pig moves at a constant velocity). The second step is to construct a network model that consists of two pipeline segments (one upstream and the other downstream of the leak location) through which the pig travels and at the junction of which fluid leak occurs. By putting these multiple mechanisms together and using resulting pressure signatures, this study presents a new method to predict the location and size of a leak in the pipeline.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.