Soot production modelling for operational computational fluid dynamics fire simulations

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
O. Marino, F. Muñoz, W. Jahn
{"title":"Soot production modelling for operational computational fluid dynamics fire simulations","authors":"O. Marino, F. Muñoz, W. Jahn","doi":"10.1177/0734904120905579","DOIUrl":null,"url":null,"abstract":"With the aim of minimising the losses produced by fire accidents, fire engineering applies physics and engineering principles to preserve the integrity of people, environment and infrastructure. Fire modelling is complex due to the interaction between chemistry, heat transfer and fluid dynamics. Commercially available simulation tools necessarily simplify this complexity, excluding less fundamental processes, such as soot production. By not including this compound in the simulations, the interactions of radiation heat transfer, fire propagation and toxicity must be approximated based on input parameters that are often not well defined. In this work, two semi-empirical soot models are incorporated in the fire dynamics simulator. The models are compared against experimental data. For the operational viability in large-scale scenarios, a correction factor for the local variables is proposed as a function of the cell size, achieving good agreement with experimental data in terms of the amount of soot generated.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"38 1","pages":"284 - 308"},"PeriodicalIF":1.9000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120905579","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120905579","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the aim of minimising the losses produced by fire accidents, fire engineering applies physics and engineering principles to preserve the integrity of people, environment and infrastructure. Fire modelling is complex due to the interaction between chemistry, heat transfer and fluid dynamics. Commercially available simulation tools necessarily simplify this complexity, excluding less fundamental processes, such as soot production. By not including this compound in the simulations, the interactions of radiation heat transfer, fire propagation and toxicity must be approximated based on input parameters that are often not well defined. In this work, two semi-empirical soot models are incorporated in the fire dynamics simulator. The models are compared against experimental data. For the operational viability in large-scale scenarios, a correction factor for the local variables is proposed as a function of the cell size, achieving good agreement with experimental data in terms of the amount of soot generated.
用于操作计算流体动力学火灾模拟的煤烟产生建模
为了最大限度地减少火灾事故造成的损失,消防工程应用物理和工程原理来保护人员、环境和基础设施的完整性。由于化学、传热和流体动力学之间的相互作用,火灾建模是复杂的。商业上可用的模拟工具必然会简化这种复杂性,不包括不太基本的过程,如烟尘生产。通过在模拟中不包括这种化合物,辐射传热、火灾传播和毒性的相互作用必须基于通常没有很好定义的输入参数来近似。在这项工作中,两个半经验烟灰模型被纳入火灾动力学模拟器。将模型与实验数据进行了比较。对于大规模场景中的操作可行性,提出了局部变量的校正因子作为单元大小的函数,在产生的烟尘量方面与实验数据达成了良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信