Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd2+, Pb2+ and Cu2+: Theoretical insight into the role of CxBOy(H)
Yifeng Shen, Yan Xue, Xu Xia, Shaoyi Zeng, Jiayong Zhang, Kunquan Li
{"title":"Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd2+, Pb2+ and Cu2+: Theoretical insight into the role of CxBOy(H)","authors":"Yifeng Shen, Yan Xue, Xu Xia, Shaoyi Zeng, Jiayong Zhang, Kunquan Li","doi":"10.1016/j.carbon.2023.118350","DOIUrl":null,"url":null,"abstract":"<div><p><span>It still remains challenges to develop efficient, sensitive yet low-cost electrochemical sensing platforms for quantification of heavy metal ions<span><span>. Herein, by combining experiments and theoretical calculations, a novel boron-modified bio-carbon (B-bioC) electrode material prepared by ultrasonic-assisted hot impregnation with cotton stalk and inexpensive boric acid and subsequent </span>pyrolysis<span><span> strategy is initially proposed for simultaneous electroanalysis of cadmium (Cd), lead (Pb) and copper (Cu) using differential pulsed anodic stripping voltammetry<span> (DPASV). The physico-chemical characterizations together with electrochemical characterizations suggested that a higher graphitization level for B-bioC was obtained by the catalytic graphitization effect of metalloid boron, thus rendering lower impedance and faster electron-transfer rate compared with pristine bio-carbon. Also, stronger </span></span>electrocatalytic activity was observed as a results of the introduction of various boron-bonding electroactive sites (C</span></span></span><sub>x</sub>BO<sub>y</sub>(H)). These combined unique advantages make a great role for the enhanced electroanalytical properties of the modified electrodes (B-bioC/MEDs) with a linear response of Cd<sup>2+</sup>, Pb<sup>2+</sup>, and Cu<sup>2+</sup> concentration range of 0.25–40 μM, 0.06–4.8 μM, and 0.125–20 μM, with sensibility of 10.54, 509.96, and 22.38 μA μM<sup>−1</sup> cm<sup>−2</sup>, and detection limit low to 54, 4, and 24 nM (S/N = 3), respectively, which are comparable to certain reported metal-modified bio-carbons. Finally, through DFT calculations, it was concluded that C-BO<sub>2</sub><span> on B-bioC was the optimum active site over seven B-bonding configurations. This work throws light on the pivotal roles of B configurations in electrochemical sensing and provides theoretical support for deliberately designing ultrasensitive bio-carbon based electrochemical sensing platforms toward heavy metal ions of interest.</span></p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232300595X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
It still remains challenges to develop efficient, sensitive yet low-cost electrochemical sensing platforms for quantification of heavy metal ions. Herein, by combining experiments and theoretical calculations, a novel boron-modified bio-carbon (B-bioC) electrode material prepared by ultrasonic-assisted hot impregnation with cotton stalk and inexpensive boric acid and subsequent pyrolysis strategy is initially proposed for simultaneous electroanalysis of cadmium (Cd), lead (Pb) and copper (Cu) using differential pulsed anodic stripping voltammetry (DPASV). The physico-chemical characterizations together with electrochemical characterizations suggested that a higher graphitization level for B-bioC was obtained by the catalytic graphitization effect of metalloid boron, thus rendering lower impedance and faster electron-transfer rate compared with pristine bio-carbon. Also, stronger electrocatalytic activity was observed as a results of the introduction of various boron-bonding electroactive sites (CxBOy(H)). These combined unique advantages make a great role for the enhanced electroanalytical properties of the modified electrodes (B-bioC/MEDs) with a linear response of Cd2+, Pb2+, and Cu2+ concentration range of 0.25–40 μM, 0.06–4.8 μM, and 0.125–20 μM, with sensibility of 10.54, 509.96, and 22.38 μA μM−1 cm−2, and detection limit low to 54, 4, and 24 nM (S/N = 3), respectively, which are comparable to certain reported metal-modified bio-carbons. Finally, through DFT calculations, it was concluded that C-BO2 on B-bioC was the optimum active site over seven B-bonding configurations. This work throws light on the pivotal roles of B configurations in electrochemical sensing and provides theoretical support for deliberately designing ultrasensitive bio-carbon based electrochemical sensing platforms toward heavy metal ions of interest.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.