Marylis Barreyat, Philippe Chambon, Jean-François Mahfouf, Ghislain Faure
{"title":"A 1D Bayesian inversion of microwave radiances using several radiative properties of solid hydrometeors","authors":"Marylis Barreyat, Philippe Chambon, Jean-François Mahfouf, Ghislain Faure","doi":"10.1002/asl.1142","DOIUrl":null,"url":null,"abstract":"<p>Numerical weather prediction centers increasingly make use of cloudy and rainy microwave radiances. Currently, the high microwave frequencies are simulated using simplified assumptions regarding the radiative properties of frozen hydrometeors. In particular, one single particle shape is often used for all precipitating frozen particles, all over the globe, and for all cloud types. In this paper, a multi-SSP (single scattering properties) approach for 1D Bayesian inversions is examined. Two experiments were set up: (1) one with three SSPs and (2) one with the previous SSPs plus one which leads to very cold brightness temperature distributions. For that purpose, we used observations from the GPM Microwave Imager radiometer over 2 months period and forecasts from the Météo-France convective scale AROME model. The results showed that mixtures of SSP are chosen by the inversion method for meteorological conditions with low scattering and that a single particle is chosen for those with high scattering to perform the inversions. Despite the fact that no specific weather scenes were found to be associated with a particular SSP the most efficient scattering particles can be favored for some of them.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1142","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1142","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical weather prediction centers increasingly make use of cloudy and rainy microwave radiances. Currently, the high microwave frequencies are simulated using simplified assumptions regarding the radiative properties of frozen hydrometeors. In particular, one single particle shape is often used for all precipitating frozen particles, all over the globe, and for all cloud types. In this paper, a multi-SSP (single scattering properties) approach for 1D Bayesian inversions is examined. Two experiments were set up: (1) one with three SSPs and (2) one with the previous SSPs plus one which leads to very cold brightness temperature distributions. For that purpose, we used observations from the GPM Microwave Imager radiometer over 2 months period and forecasts from the Météo-France convective scale AROME model. The results showed that mixtures of SSP are chosen by the inversion method for meteorological conditions with low scattering and that a single particle is chosen for those with high scattering to perform the inversions. Despite the fact that no specific weather scenes were found to be associated with a particular SSP the most efficient scattering particles can be favored for some of them.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.