{"title":"Editorial: Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field","authors":"F. A. Almeida, R. Srinivasan, S. Vijayakumar","doi":"10.3389/fnano.2023.1198994","DOIUrl":null,"url":null,"abstract":"Recent advancement in nanoscience and nanotechnology has given us scope for developing biomimetic and biocompatible nanoparticles/nanomaterials using natural products. Nanoparticles/nanomaterials exhibit remarkable physicochemical and biological properties, which are entirely distinct from their bulk materials, making them ideal candidates for biological applications. The plant, microorganisms, and biopolymersbased nanoparticles/nanomaterials are highly advantageous compared to those involving chemical reductants. The biological synthesis method uses eco-friendly solvents and nontoxic chemicals and thereby helps in minimizing the release of hazardous wastes to the environment. In recent years, widespread microbial infections and mosquito-borne parasitic diseases have been a major threat to humans. In addition, dreadful diseases like cancer have become more common and bring massive mortality to human populations. Many of the currently available growth inhibitory agents and chemotherapeutics are too expensive, cause drug resistance, and have numerous side effects. In this scenario, developing novel therapeutic agents that are cost-effective, safe, and without any side effects is of utmost importance. The development of biological nanoparticles/nanomaterials either from plants, microorganisms, or biopolymers is the need of the hour. Most of the newly developed bionanoparticles/bionanomaterials are promising and have significantly contributed to preventing ailments. This Research Topic, “Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field”, aimed to include the synthesis, physicochemical characterization, in vitro and in vivo evaluation of the antimicrobial, anti-biofilm, anti-quorum sensing, antiviral, anti-infective, and anti-cancer properties of bionanoparticles/bionanomaterials, as well as their application in the treatment and diagnosis of diseases. OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2023.1198994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancement in nanoscience and nanotechnology has given us scope for developing biomimetic and biocompatible nanoparticles/nanomaterials using natural products. Nanoparticles/nanomaterials exhibit remarkable physicochemical and biological properties, which are entirely distinct from their bulk materials, making them ideal candidates for biological applications. The plant, microorganisms, and biopolymersbased nanoparticles/nanomaterials are highly advantageous compared to those involving chemical reductants. The biological synthesis method uses eco-friendly solvents and nontoxic chemicals and thereby helps in minimizing the release of hazardous wastes to the environment. In recent years, widespread microbial infections and mosquito-borne parasitic diseases have been a major threat to humans. In addition, dreadful diseases like cancer have become more common and bring massive mortality to human populations. Many of the currently available growth inhibitory agents and chemotherapeutics are too expensive, cause drug resistance, and have numerous side effects. In this scenario, developing novel therapeutic agents that are cost-effective, safe, and without any side effects is of utmost importance. The development of biological nanoparticles/nanomaterials either from plants, microorganisms, or biopolymers is the need of the hour. Most of the newly developed bionanoparticles/bionanomaterials are promising and have significantly contributed to preventing ailments. This Research Topic, “Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field”, aimed to include the synthesis, physicochemical characterization, in vitro and in vivo evaluation of the antimicrobial, anti-biofilm, anti-quorum sensing, antiviral, anti-infective, and anti-cancer properties of bionanoparticles/bionanomaterials, as well as their application in the treatment and diagnosis of diseases. OPEN ACCESS