Entropic Uncertainty Relations for (N, M)-POVMs

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Fan Huang, Liang Tang, Ming-Qiang Bai
{"title":"Entropic Uncertainty Relations for (N, M)-POVMs","authors":"Fan Huang,&nbsp;Liang Tang,&nbsp;Ming-Qiang Bai","doi":"10.1007/s10773-023-05372-2","DOIUrl":null,"url":null,"abstract":"<div><p>Characterizing uncertainty relations through entropy is a hot topic in quantum information theory. In this paper, the multifarious lower entropic bounds, which can unify the existing entropic uncertainty relations, are derived, including the Tsallis entropies, the Rényi entropies, the min-entropies and the Maassen-Uffink type based on a broad family of generalized informationally complete symmetric measurements. Furthermore, some detailed examples are given and it is shown that the presented entropic uncertainty relations are more powerful and comprehensive than the existing ones.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05372-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing uncertainty relations through entropy is a hot topic in quantum information theory. In this paper, the multifarious lower entropic bounds, which can unify the existing entropic uncertainty relations, are derived, including the Tsallis entropies, the Rényi entropies, the min-entropies and the Maassen-Uffink type based on a broad family of generalized informationally complete symmetric measurements. Furthermore, some detailed examples are given and it is shown that the presented entropic uncertainty relations are more powerful and comprehensive than the existing ones.

(N, M)- povm的熵不确定性关系
利用熵来表征不确定性关系是量子信息论中的一个热点问题。本文在广义信息完备对称测量的基础上,导出了可以统一现有熵不确定性关系的各种熵下界,包括Tsallis熵、rsamunyi熵、min-熵和Maassen-Uffink型熵下界。并给出了具体的算例,结果表明所建立的熵不确定性关系比现有的熵不确定性关系更全面、更有力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信