Remote C–H Functionalization of 8-Aminoquinoline Ring

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhihui Xu, Xiaogang Yang, Shuang-Feng Yin, Renhua Qiu
{"title":"Remote C–H Functionalization of 8-Aminoquinoline Ring","authors":"Zhihui Xu,&nbsp;Xiaogang Yang,&nbsp;Shuang-Feng Yin,&nbsp;Renhua Qiu","doi":"10.1007/s41061-020-00303-9","DOIUrl":null,"url":null,"abstract":"<p>8-Aminoquinoline is a common nitrogen-containing heterocyclic framework in many natural products, functional materials and useful drugs. It has been developed as a powerful bidentate directing group or ligand auxiliary in the field of C–H bond activation/functionalization in recent years. In this context, the synthesis of substituted 8-aminoquinoline is of great importance. In this review we focus on the functionalization of positions C2–C7 on the 8-aminoquinoline ring, which involves the formation of C–C and C–Z (Z?=?heteroatom) bonds by transition metal catalysts, photocatalysts or metal-free conditions. Mechanistically, a single electron transfer (SET) pathway is suggested in most cases.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00303-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-020-00303-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

8-Aminoquinoline is a common nitrogen-containing heterocyclic framework in many natural products, functional materials and useful drugs. It has been developed as a powerful bidentate directing group or ligand auxiliary in the field of C–H bond activation/functionalization in recent years. In this context, the synthesis of substituted 8-aminoquinoline is of great importance. In this review we focus on the functionalization of positions C2–C7 on the 8-aminoquinoline ring, which involves the formation of C–C and C–Z (Z?=?heteroatom) bonds by transition metal catalysts, photocatalysts or metal-free conditions. Mechanistically, a single electron transfer (SET) pathway is suggested in most cases.

Abstract Image

8-氨基喹啉环的远端碳氢功能化
8-氨基喹啉是许多天然产物、功能材料和有用药物中常见的含氮杂环骨架。近年来,它作为一种强有力的双齿导向基团或配体助剂在碳-氢键激活/功能化领域得到了发展。在此背景下,取代8-氨基喹啉的合成具有重要意义。本文综述了8-氨基喹啉环上C2-C7位的官能化,包括在过渡金属催化剂、光催化剂或无金属条件下形成C-C和C-Z (Z =?杂原子)键。在大多数情况下,单电子转移(SET)途径被认为是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信