The photo-redox of chromium regulated by microplastics (MPs) and MPs-derived dissolved organic matter (MPs-DOM) and the CO2 emission of MPs-DOM

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Enyao Zhang , Yalan Chen , Yang Li , Ke Sun , Yan Yang , Bo Gao , Baoshan Xing
{"title":"The photo-redox of chromium regulated by microplastics (MPs) and MPs-derived dissolved organic matter (MPs-DOM) and the CO2 emission of MPs-DOM","authors":"Enyao Zhang ,&nbsp;Yalan Chen ,&nbsp;Yang Li ,&nbsp;Ke Sun ,&nbsp;Yan Yang ,&nbsp;Bo Gao ,&nbsp;Baoshan Xing","doi":"10.1016/j.fmre.2022.08.009","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) and chromium (Cr) are common pollutants in wastewater treatment plants, where ultraviolet disinfection processes may degrade MPs and photooxidize Cr(III) into more hazardous Cr(VI). In this study, the effects of MPs on the phototransformation of coexisting Cr, as well as the role and ecological effects of MPs-derived dissolved organic matter (MPs-DOM), were investigated. The photooxidation of MPs and Cr(III) was radical-driven reaction. The addition of MPs inhibited the photooxidation of Cr(III) and induced the photoreduction of Cr(VI) through surface adsorption. Both MPs and MPs-DOM generated comparable ROS at different irradiation moments, which can affect the photodegradation of MPs and MPs-DOM, as well as the phototransformation of Cr. The 56-day incubation showed a higher mineralization ratio of MPs-DOMs than riverine humic acid, indicating the vital contribution of MPs-DOMs to carbon emissions. In general, MPs-DOM lowered microbial abundance and diversity compared to the original inoculum. Bacterial and fungal succession was affected by both MPs-DOM and the original inoculum, with polyvinyl chloride-derived DOM possessing a stronger filtration impact on microbial communities than the other three MPs-DOMs. In this study, a win–win solution for Cr(VI) reduction and MPs treatment through photoirradiation was proposed, and the potential significant role of MPs-DOM in the transformation of coexisting contaminants, the carbon cycle, and microbial succession was highlighted.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1576-1585"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822003508","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) and chromium (Cr) are common pollutants in wastewater treatment plants, where ultraviolet disinfection processes may degrade MPs and photooxidize Cr(III) into more hazardous Cr(VI). In this study, the effects of MPs on the phototransformation of coexisting Cr, as well as the role and ecological effects of MPs-derived dissolved organic matter (MPs-DOM), were investigated. The photooxidation of MPs and Cr(III) was radical-driven reaction. The addition of MPs inhibited the photooxidation of Cr(III) and induced the photoreduction of Cr(VI) through surface adsorption. Both MPs and MPs-DOM generated comparable ROS at different irradiation moments, which can affect the photodegradation of MPs and MPs-DOM, as well as the phototransformation of Cr. The 56-day incubation showed a higher mineralization ratio of MPs-DOMs than riverine humic acid, indicating the vital contribution of MPs-DOMs to carbon emissions. In general, MPs-DOM lowered microbial abundance and diversity compared to the original inoculum. Bacterial and fungal succession was affected by both MPs-DOM and the original inoculum, with polyvinyl chloride-derived DOM possessing a stronger filtration impact on microbial communities than the other three MPs-DOMs. In this study, a win–win solution for Cr(VI) reduction and MPs treatment through photoirradiation was proposed, and the potential significant role of MPs-DOM in the transformation of coexisting contaminants, the carbon cycle, and microbial succession was highlighted.

Abstract Image

微塑料(MPs)和微塑料衍生的溶解有机物(MPs- dom)调控铬的光氧化还原以及MPs- dom的CO2排放
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信