Reconstruction of the alveolar-capillary barrier in vitro based on a photo-responsive stretchable Janus membrane.

Smart medicine Pub Date : 2023-02-21 eCollection Date: 2023-02-01 DOI:10.1002/SMMD.20220035
Changmin Shao, Ting Cao, Xiaochen Wang, Qihui Fan, Fangfu Ye
{"title":"Reconstruction of the alveolar-capillary barrier in vitro based on a photo-responsive stretchable Janus membrane.","authors":"Changmin Shao, Ting Cao, Xiaochen Wang, Qihui Fan, Fangfu Ye","doi":"10.1002/SMMD.20220035","DOIUrl":null,"url":null,"abstract":"<p><p>The lung is the respiratory organ of the human body, and the alveoli are the most basic functional units of the lung. Herein, a photo-responsive stretchable Janus membrane was proposed for the reconstruction of the alveolar-capillary barrier in vitro. This Janus membrane was fabricated by photocrosslinking methylacrylamide gelatin (Gelma) hydrogel and N-isoacrylamide (NIPAM) hydrogel mixed with graphene oxide (GO). The Gelma hydrogel containing large amounts of collagen provides a natural extracellular matrix environment for cell growth, while the temperature-sensitive NIPAM hydrogel combined with GO gives the membrane a light-controlled stretching property. Based on this Janus membrane, an open polydimethylsiloxane chip was established to coculture alveolar epithelial cells and vascular endothelial cells at the air-liquid interface. It was demonstrated that the alveolar epithelial cells cultured on the upper side of the Janus membrane could express epithelial cell marker protein E-cadherin and secrete alveolar surfactant. In addition, VE-cadherin, an endothelium-specific protein located at the junction between endothelial cells, was also detected in vascular endothelial cells cultured on the underside of Janus membrane. The constructed lung tissue model with the dynamically stretchable Janus membrane is well-suited for COVID-19 infection studies and drug testing.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220035"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lung is the respiratory organ of the human body, and the alveoli are the most basic functional units of the lung. Herein, a photo-responsive stretchable Janus membrane was proposed for the reconstruction of the alveolar-capillary barrier in vitro. This Janus membrane was fabricated by photocrosslinking methylacrylamide gelatin (Gelma) hydrogel and N-isoacrylamide (NIPAM) hydrogel mixed with graphene oxide (GO). The Gelma hydrogel containing large amounts of collagen provides a natural extracellular matrix environment for cell growth, while the temperature-sensitive NIPAM hydrogel combined with GO gives the membrane a light-controlled stretching property. Based on this Janus membrane, an open polydimethylsiloxane chip was established to coculture alveolar epithelial cells and vascular endothelial cells at the air-liquid interface. It was demonstrated that the alveolar epithelial cells cultured on the upper side of the Janus membrane could express epithelial cell marker protein E-cadherin and secrete alveolar surfactant. In addition, VE-cadherin, an endothelium-specific protein located at the junction between endothelial cells, was also detected in vascular endothelial cells cultured on the underside of Janus membrane. The constructed lung tissue model with the dynamically stretchable Janus membrane is well-suited for COVID-19 infection studies and drug testing.

基于光响应可拉伸Janus膜的肺泡-毛细血管屏障体外重建
肺是人体的呼吸器官,肺泡是肺最基本的功能单元。在此,提出了一种光响应可拉伸Janus膜,用于体外重建肺泡-毛细血管屏障。这种Janus膜是通过光交联甲基丙烯酰胺明胶(Gelma)水凝胶和N‐异丙烯酰胺(NIPAM)水凝胶与氧化石墨烯(GO)混合制备的。含有大量胶原蛋白的Gelma水凝胶为细胞生长提供了天然的细胞外基质环境,而与GO结合的温度敏感的NIPAM水凝胶使膜具有可控的拉伸性能。基于这种Janus膜,建立了一种开放的聚二甲基硅氧烷芯片,在气液界面共培养肺泡上皮细胞和血管内皮细胞。研究表明,在Janus膜上侧培养的肺泡上皮细胞可以表达上皮细胞标记蛋白E‐钙粘蛋白并分泌肺泡表面活性物质。此外,在Janus膜下侧培养的血管内皮细胞中也检测到位于内皮细胞之间连接处的内皮特异性蛋白VE‐cadherin。构建的具有动态可拉伸Janus膜的肺组织模型非常适合于COVID-19感染研究和药物测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信