Induction changes in chlorophyll fluorescence are associated with photosynthetic electron transfer, generation of the transmembrane proton gradient, and production of carbohydrates in the CO2 fixation cycle. The reactions of photosynthesis are also accompanied by the outflow of photoproducts from illuminated chloroplasts and their long-distance transport. The exchange of metabolites across the chloroplast envelope membranes is carried out by transporters that are active in the light and cease to operate in darkness. Inactivation of light-dependent envelope transporters in Chara cells interrupts spatial signaling manifested as a transient fluorescence rise in response to illumination of a distant cell area. The dark adaptation was found to down-regulate the entry of metabolites from the streaming cytoplasm into shaded chloroplasts but had rather low influence on metabolite export from illuminated plastids. Fluorescence induction curves were quite sensitive to illumination or darkening of the sample area residing outside the region of photometric assay. The amplitude of slow fluorescence changes observed under dim illumination of the whole Chara internode was substantially larger than under narrow-field illumination of the fluorescence assay region. The results indicate that the slow increase in fluorescence during the induction period in characean cells results not only from photosynthetic activity of chloroplasts in the examined cell region but also from interactions between the analyzed and neighboring cell areas. When the cytoplasmic streaming was arrested by cytochalasin D, similar induction changes were induced by local and global illumination, indicating a disruption of long-range interactions. The results suggest that the liquid flow not only carries metabolites from illuminated to shaded cell parts but also facilitates the export of photometabolites from chloroplasts to the cytoplasm.