{"title":"Soil texture influences on soil health scoring functions in Ontario agricultural soils: a possible framework towards a provincial soil health test","authors":"I. Chahal, D. Saurette, L. V. Van Eerd","doi":"10.1139/cjss-2021-0145","DOIUrl":null,"url":null,"abstract":"Abstract Since soil health is impacted by inherent soil properties, it is, therefore, challenging to apply the same soil health frameworks across multiple regions and soil types. Here, we examined the effect of soil textural group (coarse, medium, and fine) on four soil health indicators of soils sampled from diverse agricultural systems across Ontario. Scoring functions were developed by calculating cumulative normal distributions, using the mean and standard deviation of each soil health indicator, for three or five soil textural groups. For each soil health indicator, soil health scoring values were provided using the “more is better” approach, where greater soil health scores implied better soil health. Soil health indicators were significantly affected by three but not all five soil textural groups. Evolved NH3 and CO2, and potentially mineralizable N had stronger associations with each other as revealed by correlation and principal component analysis. Our results also suggested that mean separation of the tested soil health indicators was more consistent with three soil textural groups (coarse, medium, and fine) than five soil textural groups (clays, clay loams, loams, sandy loams, and sand); therefore, we recommend using three soil textural groups to develop soil health scoring functions. The findings of this study lay a groundwork for future soil health assessment involving a larger number of samples across Ontario and more soil indicators, which will facilitate the regional interpretation of soil health.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2021-0145","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Since soil health is impacted by inherent soil properties, it is, therefore, challenging to apply the same soil health frameworks across multiple regions and soil types. Here, we examined the effect of soil textural group (coarse, medium, and fine) on four soil health indicators of soils sampled from diverse agricultural systems across Ontario. Scoring functions were developed by calculating cumulative normal distributions, using the mean and standard deviation of each soil health indicator, for three or five soil textural groups. For each soil health indicator, soil health scoring values were provided using the “more is better” approach, where greater soil health scores implied better soil health. Soil health indicators were significantly affected by three but not all five soil textural groups. Evolved NH3 and CO2, and potentially mineralizable N had stronger associations with each other as revealed by correlation and principal component analysis. Our results also suggested that mean separation of the tested soil health indicators was more consistent with three soil textural groups (coarse, medium, and fine) than five soil textural groups (clays, clay loams, loams, sandy loams, and sand); therefore, we recommend using three soil textural groups to develop soil health scoring functions. The findings of this study lay a groundwork for future soil health assessment involving a larger number of samples across Ontario and more soil indicators, which will facilitate the regional interpretation of soil health.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.