Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Ivan A. Bizyaev, Ivan S. Mamaev
{"title":"Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors","authors":"Ivan A. Bizyaev,&nbsp;Ivan S. Mamaev","doi":"10.1134/S1560354723010070","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate a nonholonomic system with parametric excitation, a Roller Racer with variable gyrostatic momentum. We examine in detail the problem of the existence of regimes with unbounded growth of energy (nonconservative Fermi acceleration). We find a criterion for the existence of trajectories for which one of the velocity components increases withound bound and has asymptotics <span>\\(t^{1/3}\\)</span>. In addition, we show that the problem under consideration reduces to analysis of a three-dimensional Poincaré map. This map exhibits both regular attractors (a fixed point, a limit cycle and a torus) and strange attractors.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 1","pages":"107 - 130"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723010070","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate a nonholonomic system with parametric excitation, a Roller Racer with variable gyrostatic momentum. We examine in detail the problem of the existence of regimes with unbounded growth of energy (nonconservative Fermi acceleration). We find a criterion for the existence of trajectories for which one of the velocity components increases withound bound and has asymptotics \(t^{1/3}\). In addition, we show that the problem under consideration reduces to analysis of a three-dimensional Poincaré map. This map exhibits both regular attractors (a fixed point, a limit cycle and a torus) and strange attractors.

Abstract Image

变陀螺静动量的滚轮赛车:加速度判据和奇异吸引子
本文研究了一类具有参数激励的非完整系统,即具有可变陀螺静动量的滚轮。我们详细地研究了能量无界增长(非保守费米加速度)的存在性问题。我们找到了一个判定轨迹存在的准则,其中一个速度分量在边界内增加并且具有渐近性\(t^{1/3}\)。此外,我们还表明,所考虑的问题可以简化为对三维庞卡罗图的分析。这个映射既展示了正则吸引子(不动点、极限环和环面),也展示了奇异吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信