Joint Diagnosis of High-dimensional Process Mean and Covariance Matrix based on Bayesian Model Selection

IF 2.3 3区 工程技术 Q1 STATISTICS & PROBABILITY
Feng Xu, L. Shu, Yanting Li, Binhui Wang
{"title":"Joint Diagnosis of High-dimensional Process Mean and Covariance Matrix based on Bayesian Model Selection","authors":"Feng Xu, L. Shu, Yanting Li, Binhui Wang","doi":"10.1080/00401706.2023.2182366","DOIUrl":null,"url":null,"abstract":"Abstract Apart from the quick detection of abnormal changes in a process, it is also critical to pinpoint faulty variables after an out-of-control signal. The existing diagnostic procedures mainly focus on the diagnosis of changes in the process mean. This article investigates the joint diagnosis of high-dimensional process mean and covariance matrix based on Bayesian model selection with nonlocal priors. The proposed procedure enjoys two promising features. First, in addition to the isolation of shifted components, it can also provide a probability that the identified components are true, which is very useful for elimination of root causes of abnormal changes. Second, it possesses the model consistency property in the sense that the probability of identifying the true components with shifts approaches one as the sample size increases. The performance comparisons favor the proposed procedure. A real example based on the urban waste water treatment process is provided to illustrate the implementation of the proposed method.","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00401706.2023.2182366","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Apart from the quick detection of abnormal changes in a process, it is also critical to pinpoint faulty variables after an out-of-control signal. The existing diagnostic procedures mainly focus on the diagnosis of changes in the process mean. This article investigates the joint diagnosis of high-dimensional process mean and covariance matrix based on Bayesian model selection with nonlocal priors. The proposed procedure enjoys two promising features. First, in addition to the isolation of shifted components, it can also provide a probability that the identified components are true, which is very useful for elimination of root causes of abnormal changes. Second, it possesses the model consistency property in the sense that the probability of identifying the true components with shifts approaches one as the sample size increases. The performance comparisons favor the proposed procedure. A real example based on the urban waste water treatment process is provided to illustrate the implementation of the proposed method.
基于贝叶斯模型选择的高维过程均值和协方差矩阵联合诊断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technometrics
Technometrics 管理科学-统计学与概率论
CiteScore
4.50
自引率
16.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the  American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信