Muhammad Ismail, Maria Rasheed, Chandreswar Mahata, Myounggon Kang, Sungjun Kim
{"title":"Mimicking biological synapses with a-HfSiOx-based memristor: implications for artificial intelligence and memory applications","authors":"Muhammad Ismail, Maria Rasheed, Chandreswar Mahata, Myounggon Kang, Sungjun Kim","doi":"10.1186/s40580-023-00380-8","DOIUrl":null,"url":null,"abstract":"<div><p>Memristors, owing to their uncomplicated structure and resemblance to biological synapses, are predicted to see increased usage in the domain of artificial intelligence. Additionally, to augment the capacity for multilayer data storage in high-density memory applications, meticulous regulation of quantized conduction with an extremely low transition energy is required. In this work, an a-HfSiO<sub>x</sub>-based memristor was grown through atomic layer deposition (ALD) and investigated for its electrical and biological properties for use in multilevel switching memory and neuromorphic computing systems. The crystal structure and chemical distribution of the HfSiOx/TaN layers were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The Pt/a-HfSiO<sub>x</sub>/TaN memristor was confirmed by transmission electron microscopy (TEM) and showed analog bipolar switching behavior with high endurance stability (1000 cycles), long data retention performance (10<sup>4</sup> s), and uniform voltage distribution. Its multilevel capability was demonstrated by restricting current compliance (CC) and stopping the reset voltage. The memristor exhibited synaptic properties, such as short-term plasticity, excitatory postsynaptic current (EPSC), spiking-rate-dependent plasticity (SRDP), post-tetanic potentiation (PTP), and paired-pulse facilitation (PPF). Furthermore, it demonstrated 94.6% pattern accuracy in neural network simulations. Thus, a-HfSiO<sub>x</sub>-based memristors have great potential for use in multilevel memory and neuromorphic computing systems.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00380-8","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-023-00380-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Memristors, owing to their uncomplicated structure and resemblance to biological synapses, are predicted to see increased usage in the domain of artificial intelligence. Additionally, to augment the capacity for multilayer data storage in high-density memory applications, meticulous regulation of quantized conduction with an extremely low transition energy is required. In this work, an a-HfSiOx-based memristor was grown through atomic layer deposition (ALD) and investigated for its electrical and biological properties for use in multilevel switching memory and neuromorphic computing systems. The crystal structure and chemical distribution of the HfSiOx/TaN layers were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The Pt/a-HfSiOx/TaN memristor was confirmed by transmission electron microscopy (TEM) and showed analog bipolar switching behavior with high endurance stability (1000 cycles), long data retention performance (104 s), and uniform voltage distribution. Its multilevel capability was demonstrated by restricting current compliance (CC) and stopping the reset voltage. The memristor exhibited synaptic properties, such as short-term plasticity, excitatory postsynaptic current (EPSC), spiking-rate-dependent plasticity (SRDP), post-tetanic potentiation (PTP), and paired-pulse facilitation (PPF). Furthermore, it demonstrated 94.6% pattern accuracy in neural network simulations. Thus, a-HfSiOx-based memristors have great potential for use in multilevel memory and neuromorphic computing systems.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.