Friction factor analysis for a nanofluid circulating in a microchannel filled with a homogeneous porous medium

IF 1.3 4区 工程技术 Q3 MECHANICS
Francisco Fernando Hernández-Figueroa, F. Méndez, J. Lizardi, I. Monsivais
{"title":"Friction factor analysis for a nanofluid circulating in a microchannel filled with a homogeneous porous medium","authors":"Francisco Fernando Hernández-Figueroa, F. Méndez, J. Lizardi, I. Monsivais","doi":"10.1088/1873-7005/ac4bb3","DOIUrl":null,"url":null,"abstract":"This work presents the numerical solution for different velocity profiles and friction factors on a rectangular porous microchannel fully saturated by the flow of a nanofluid introducing different viscosity models, including one nanofluid density model. The Darcy-Brinkman-Forchheimer equation was used to solve the momentum equation in the porous medium. The results show that the relative density of the fluid, the nanoparticle diameters and their volumetric concentration have a direct influence on the velocity profiles only when the inertial effects caused by the presence of the porous matrix are important. Finally, it was found that only viscosity models that depend on temperature and nanoparticle diameter reduce the friction factor by seventy percent compared to a base fluid without nanoparticles; furthermore, these models show a velocity reduction of even ten percent along the symmetry axis of the microchannel.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac4bb3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents the numerical solution for different velocity profiles and friction factors on a rectangular porous microchannel fully saturated by the flow of a nanofluid introducing different viscosity models, including one nanofluid density model. The Darcy-Brinkman-Forchheimer equation was used to solve the momentum equation in the porous medium. The results show that the relative density of the fluid, the nanoparticle diameters and their volumetric concentration have a direct influence on the velocity profiles only when the inertial effects caused by the presence of the porous matrix are important. Finally, it was found that only viscosity models that depend on temperature and nanoparticle diameter reduce the friction factor by seventy percent compared to a base fluid without nanoparticles; furthermore, these models show a velocity reduction of even ten percent along the symmetry axis of the microchannel.
纳米流体在均匀多孔介质微通道中循环的摩擦系数分析
这项工作介绍了通过引入不同的粘度模型,包括一个纳米流体密度模型,完全饱和的矩形多孔微通道上不同速度分布和摩擦系数的数值解。采用Darcy Brinkman-Forchheimer方程求解多孔介质中的动量方程。结果表明,只有当多孔基质的存在引起的惯性效应很重要时,流体的相对密度、纳米颗粒的直径及其体积浓度才会对速度分布产生直接影响。最后,研究发现,与没有纳米颗粒的基础流体相比,只有依赖于温度和纳米颗粒直径的粘度模型才能将摩擦系数降低70%;此外,这些模型显示,沿着微通道的对称轴,速度甚至降低了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信