{"title":"Sparse attentional subsetting of item features and list-composition effects on recognition memory","authors":"Jeremy B. Caplan","doi":"10.1016/j.jmp.2023.102802","DOIUrl":null,"url":null,"abstract":"<div><p><span>Although knowledge is extremely high-dimensional, human episodic memory performance appears extremely low-dimensional, focused largely on stimulus-features that distinguish list items from one another. A cognitively plausible way this tension could be addressed is if selective attention selects a small number of features from each item. I consider an ongoing debate about whether stronger items (better encoded) interfere more than weaker items (less well encoded) with probe items during old/new episodic recognition judgements. This is called the list-strength effect, concerning whether or not effects of encoding strength are larger in lists of mixed strengths than in pure lists of a single strength. Analytic derivations with Anderson’s (1970) matched filter model show how storing only a small subset of features within high-dimensional representations, and assuming those same subsets tend to reiterate themselves item-wise at test, can support high recognition performance. In the sparse regime, the model produces a list-strength effect that is small in magnitude, resembling previous findings of so-called </span>null list-strength effects. When the attended feature space is compact, such as for phonological features, attentional subsetting cannot be sparse. This introduces non-negligible cross-talk from other list items, producing a large-magnitude list-strength effect, similar to what is observed for the production effect (better recognition when reading aloud). This continuum-based account implies the existence of a continuous range of magnitudes of list-composition effects, including occasional inverted list-strength effects. This lays the foundation for propagating effects of task-relevant attention to sparse subsets of features through a broad range of models of memory behaviour.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Although knowledge is extremely high-dimensional, human episodic memory performance appears extremely low-dimensional, focused largely on stimulus-features that distinguish list items from one another. A cognitively plausible way this tension could be addressed is if selective attention selects a small number of features from each item. I consider an ongoing debate about whether stronger items (better encoded) interfere more than weaker items (less well encoded) with probe items during old/new episodic recognition judgements. This is called the list-strength effect, concerning whether or not effects of encoding strength are larger in lists of mixed strengths than in pure lists of a single strength. Analytic derivations with Anderson’s (1970) matched filter model show how storing only a small subset of features within high-dimensional representations, and assuming those same subsets tend to reiterate themselves item-wise at test, can support high recognition performance. In the sparse regime, the model produces a list-strength effect that is small in magnitude, resembling previous findings of so-called null list-strength effects. When the attended feature space is compact, such as for phonological features, attentional subsetting cannot be sparse. This introduces non-negligible cross-talk from other list items, producing a large-magnitude list-strength effect, similar to what is observed for the production effect (better recognition when reading aloud). This continuum-based account implies the existence of a continuous range of magnitudes of list-composition effects, including occasional inverted list-strength effects. This lays the foundation for propagating effects of task-relevant attention to sparse subsets of features through a broad range of models of memory behaviour.