Yvonne Uwituze, J. Nyiraneza, Yefang Jiang, J. Dessureault‐Rompré, T. Fraser
{"title":"Soil C, N and P bioavailability and cycling following amendment with shrub willow chips","authors":"Yvonne Uwituze, J. Nyiraneza, Yefang Jiang, J. Dessureault‐Rompré, T. Fraser","doi":"10.1139/cjss-2022-0126","DOIUrl":null,"url":null,"abstract":"Potato (Solanum tuberosum L.) crops are often cultivated in coarse-textured soils with low soil organic matter (SOM), and high nitrate leaching risk. Incorporating shrub willow chips into soil could enhance soil properties, while temporally immobilizing N and thus reducing N leaching. We performed a laboratory incubation study and a field experiment to evaluate the effects of shrub willow chips applied at increasing rates in the fall after the potato harvest on C, N and P cycling, soil pH and moisture, and on barley (Hordeum vulgare L.) yield in the following year. In comparison with the control, willow chip incorporation at the rates of 40 Mg ha-1 and 60 Mg ha-1 increased total C content, but it did not affect the activity of C cycling enzymes. Willow chip addition at these rates also induced nitrate immobilization and reduced barley grain yield and total N uptake, but increased the activity of N cycling enzymes (β-1,4-N-acetylglucosaminidase and leucine aminopeptidase). Mehlich-3 extractable P content and phosphomonoesterase activity were not affected by willow chip addition. Our results suggest that shrub willow chips increased total organic C and immobilized N following their incorporation and can thus mitigate nitrate leaching after the potato harvest. The N immobilization was short-lived and was not observed over second winter. We recommend to seed a forage legume in the spring following shrub willow chip incorporation. Willow chip incorporation is an effective means of increasing soil organic carbon.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0126","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Potato (Solanum tuberosum L.) crops are often cultivated in coarse-textured soils with low soil organic matter (SOM), and high nitrate leaching risk. Incorporating shrub willow chips into soil could enhance soil properties, while temporally immobilizing N and thus reducing N leaching. We performed a laboratory incubation study and a field experiment to evaluate the effects of shrub willow chips applied at increasing rates in the fall after the potato harvest on C, N and P cycling, soil pH and moisture, and on barley (Hordeum vulgare L.) yield in the following year. In comparison with the control, willow chip incorporation at the rates of 40 Mg ha-1 and 60 Mg ha-1 increased total C content, but it did not affect the activity of C cycling enzymes. Willow chip addition at these rates also induced nitrate immobilization and reduced barley grain yield and total N uptake, but increased the activity of N cycling enzymes (β-1,4-N-acetylglucosaminidase and leucine aminopeptidase). Mehlich-3 extractable P content and phosphomonoesterase activity were not affected by willow chip addition. Our results suggest that shrub willow chips increased total organic C and immobilized N following their incorporation and can thus mitigate nitrate leaching after the potato harvest. The N immobilization was short-lived and was not observed over second winter. We recommend to seed a forage legume in the spring following shrub willow chip incorporation. Willow chip incorporation is an effective means of increasing soil organic carbon.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.