Existence of positive solutions for Kirchhoff-type problem in exterior domains

Pub Date : 2023-02-01 DOI:10.1017/S001309152300010X
Liqian Jia, Xinfu Li, Shiwang Ma
{"title":"Existence of positive solutions for Kirchhoff-type problem in exterior domains","authors":"Liqian Jia, Xinfu Li, Shiwang Ma","doi":"10.1017/S001309152300010X","DOIUrl":null,"url":null,"abstract":"Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\\Omega\\subset\\mathbb{R}^{3}$: (*)\n\\begin{align}\n\\left\\{\n\\begin{array}{ll}\n-\\left(a+b\\displaystyle{\\int}_{\\Omega}|\\nabla u|^{2}\\,{\\rm d}x\\right)\\triangle u+\\lambda u=f(u), & x\\in\\Omega,\\\\\n\\\\\nu=0, & x\\in\\partial \\Omega,\\\\\n\\end{array}\\right.\n\\end{align}where a > 0, $b\\geq0$, and λ > 0 are constants, $\\partial\\Omega\\neq\\emptyset$, $\\mathbb{R}^{3}\\backslash\\Omega$ is bounded, $u\\in H_{0}^{1}(\\Omega)$, and $f\\in C^1(\\mathbb{R},\\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \\begin{equation*}-\\Delta u+\\lambda u=f(u), \\qquad x\\in \\mathbb R^3 \\end{equation*}has only finite number of positive solutions in $H^1(\\mathbb R^3)$ and the diameter of the hole $\\mathbb R^3\\setminus \\Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001309152300010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\Omega\subset\mathbb{R}^{3}$: (*) \begin{align} \left\{ \begin{array}{ll} -\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\triangle u+\lambda u=f(u), & x\in\Omega,\\ \\ u=0, & x\in\partial \Omega,\\ \end{array}\right. \end{align}where a > 0, $b\geq0$, and λ > 0 are constants, $\partial\Omega\neq\emptyset$, $\mathbb{R}^{3}\backslash\Omega$ is bounded, $u\in H_{0}^{1}(\Omega)$, and $f\in C^1(\mathbb{R},\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \begin{equation*}-\Delta u+\lambda u=f(u), \qquad x\in \mathbb R^3 \end{equation*}has only finite number of positive solutions in $H^1(\mathbb R^3)$ and the diameter of the hole $\mathbb R^3\setminus \Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.
分享
查看原文
Kirchhoff型问题外域正解的存在性
摘要我们考虑无界外域$\Omega\subet\mathbb{R}^{3}$中的以下Kirchhoff型问题:{ll}-\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\三角形u+\lambda u=f(u),&x\in\Omega,\\\\u=0,&x\ in\ partial\Omega。\\\\end{array}\right。\完{align}wherea>0、$b\geq0$和λ>0是常数,$\partial\Omega\neq\emptyset$、$\mathbb{R}^{3}\反斜杠\Omega$是有界的,H_{0}^}1}(\Omega)$中的$u\和C^1(\mathbb{R},\mathbb \R})$的$f\在无穷大附近是亚临界和超线性的。在一些温和的条件下,我们证明了如果begin{equation*}-\Delta u+\lambda u=f(u),\qquad x\in\mathbb R^3\end{equion*}在$H^1(\mathbb R ^3)$中只有有限个正解,并且孔的直径$\mathbb R^3\setminus\Omega$足够小,那么问题(*)允许正解。如果Ω是固定的并且λ>0很小,则同样的结论成立。据我们所知,关于上述Kirchhoff方程在外域中正解的存在性,文献中没有发表类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信