Existence of positive solutions for Kirchhoff-type problem in exterior domains

IF 0.7 3区 数学 Q2 MATHEMATICS
Liqian Jia, Xinfu Li, Shiwang Ma
{"title":"Existence of positive solutions for Kirchhoff-type problem in exterior domains","authors":"Liqian Jia, Xinfu Li, Shiwang Ma","doi":"10.1017/S001309152300010X","DOIUrl":null,"url":null,"abstract":"Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\\Omega\\subset\\mathbb{R}^{3}$: (*)\n\\begin{align}\n\\left\\{\n\\begin{array}{ll}\n-\\left(a+b\\displaystyle{\\int}_{\\Omega}|\\nabla u|^{2}\\,{\\rm d}x\\right)\\triangle u+\\lambda u=f(u), & x\\in\\Omega,\\\\\n\\\\\nu=0, & x\\in\\partial \\Omega,\\\\\n\\end{array}\\right.\n\\end{align}where a > 0, $b\\geq0$, and λ > 0 are constants, $\\partial\\Omega\\neq\\emptyset$, $\\mathbb{R}^{3}\\backslash\\Omega$ is bounded, $u\\in H_{0}^{1}(\\Omega)$, and $f\\in C^1(\\mathbb{R},\\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \\begin{equation*}-\\Delta u+\\lambda u=f(u), \\qquad x\\in \\mathbb R^3 \\end{equation*}has only finite number of positive solutions in $H^1(\\mathbb R^3)$ and the diameter of the hole $\\mathbb R^3\\setminus \\Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"66 1","pages":"182 - 217"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001309152300010X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\Omega\subset\mathbb{R}^{3}$: (*) \begin{align} \left\{ \begin{array}{ll} -\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\triangle u+\lambda u=f(u), & x\in\Omega,\\ \\ u=0, & x\in\partial \Omega,\\ \end{array}\right. \end{align}where a > 0, $b\geq0$, and λ > 0 are constants, $\partial\Omega\neq\emptyset$, $\mathbb{R}^{3}\backslash\Omega$ is bounded, $u\in H_{0}^{1}(\Omega)$, and $f\in C^1(\mathbb{R},\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \begin{equation*}-\Delta u+\lambda u=f(u), \qquad x\in \mathbb R^3 \end{equation*}has only finite number of positive solutions in $H^1(\mathbb R^3)$ and the diameter of the hole $\mathbb R^3\setminus \Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.
Kirchhoff型问题外域正解的存在性
摘要我们考虑无界外域$\Omega\subet\mathbb{R}^{3}$中的以下Kirchhoff型问题:{ll}-\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\三角形u+\lambda u=f(u),&x\in\Omega,\\\\u=0,&x\ in\ partial\Omega。\\\\end{array}\right。\完{align}wherea>0、$b\geq0$和λ>0是常数,$\partial\Omega\neq\emptyset$、$\mathbb{R}^{3}\反斜杠\Omega$是有界的,H_{0}^}1}(\Omega)$中的$u\和C^1(\mathbb{R},\mathbb \R})$的$f\在无穷大附近是亚临界和超线性的。在一些温和的条件下,我们证明了如果begin{equation*}-\Delta u+\lambda u=f(u),\qquad x\in\mathbb R^3\end{equion*}在$H^1(\mathbb R ^3)$中只有有限个正解,并且孔的直径$\mathbb R^3\setminus\Omega$足够小,那么问题(*)允许正解。如果Ω是固定的并且λ>0很小,则同样的结论成立。据我们所知,关于上述Kirchhoff方程在外域中正解的存在性,文献中没有发表类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信