{"title":"Human Chorionic Gonadotropin Regulates the Smad Signaling Pathway by Antagonizing TGF-β in Giant Cell Tumor of Bone.","authors":"Tangbing Xu, Shenglin Xu, Guangwen Ma, Jun Chang, Chi Zhang, Ping Zhou, Chao Wang, Pengfei Xu, Junjun Yang, Yong Hu, Yunfeng Wu","doi":"10.2174/1574892818666230413082909","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Giant cell tumor of bone (GCTB) is a locally aggressive bone tumour aggravated by stromal cell proliferation and metastasis.</p><p><strong>Objective: </strong>We investigated the mechanism of action of human chorionic gonadotropin (HCG) in mediating GCTB proliferation and invasion.</p><p><strong>Methods: </strong>The expression of HCG was quantified using quantitative real-time PCR. After the primary stromal cells were isolated and identified, the function of HCG in GCTB was estimated using the cell counting kit-8, flow cytometry, scratch experiment, transwell assay, Western blot, and immunofluorescence. Moreover, the mechanism of HCG was assessed through western blotting.</p><p><strong>Results: </strong>HCG expression was decreased in clinical tissue samples from patients with GCTB. We validated that HCG repressed stromal cell proliferation, migration, invasion, autophagy, and epithelial- mesenchymal transition (EMT) and promoted cell apoptosis in GCTB. We also verified that HCG repressed the autophagy and EMT of stromal cells through the Smad signaling axis in GCTB. HCG inhibited the transduction of the Smad signaling pathway by restraining the binding of the TGF-β II receptor to ligand Activin A.</p><p><strong>Conclusion: </strong>HCG restrained the Smad signaling pathway by antagonizing TGF-β signaling in GCTB. HCG may serve as a useful patent to treat GCTB.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574892818666230413082909","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Giant cell tumor of bone (GCTB) is a locally aggressive bone tumour aggravated by stromal cell proliferation and metastasis.
Objective: We investigated the mechanism of action of human chorionic gonadotropin (HCG) in mediating GCTB proliferation and invasion.
Methods: The expression of HCG was quantified using quantitative real-time PCR. After the primary stromal cells were isolated and identified, the function of HCG in GCTB was estimated using the cell counting kit-8, flow cytometry, scratch experiment, transwell assay, Western blot, and immunofluorescence. Moreover, the mechanism of HCG was assessed through western blotting.
Results: HCG expression was decreased in clinical tissue samples from patients with GCTB. We validated that HCG repressed stromal cell proliferation, migration, invasion, autophagy, and epithelial- mesenchymal transition (EMT) and promoted cell apoptosis in GCTB. We also verified that HCG repressed the autophagy and EMT of stromal cells through the Smad signaling axis in GCTB. HCG inhibited the transduction of the Smad signaling pathway by restraining the binding of the TGF-β II receptor to ligand Activin A.
Conclusion: HCG restrained the Smad signaling pathway by antagonizing TGF-β signaling in GCTB. HCG may serve as a useful patent to treat GCTB.
期刊介绍:
Aims & Scope
Recent Patents on Anti-Cancer Drug Discovery publishes review and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of anti-cancer drug discovery e.g. on novel bioactive compounds, analogs, targets & predictive biomarkers & drug efficacy biomarkers. The journal also publishes book reviews of eBooks and books on anti-cancer drug discovery. A selection of important and recent patents on anti-cancer drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-cancer drug design and discovery. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to anti-cancer drug discovery.