Identifying predictors of analyst rating quality: An ensemble feature selection approach

IF 6.9 2区 经济学 Q1 ECONOMICS
Shuai Jiang , Yanhong Guo , Wenjun Zhou , Xianneng Li
{"title":"Identifying predictors of analyst rating quality: An ensemble feature selection approach","authors":"Shuai Jiang ,&nbsp;Yanhong Guo ,&nbsp;Wenjun Zhou ,&nbsp;Xianneng Li","doi":"10.1016/j.ijforecast.2022.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting the analyst rating quality (ARQ), defined as whether a stock rating provided by an analyst can correctly foretell the stock movement, is crucial to fully leveraging the value of this information resource. This study develops a two-phase method to identify key predictors for ARQ forecasting. In the first stage, we conduct a thorough literature review to obtain a comprehensive list of candidate features, and organise them under three categories: analyst-related, rating-related, and stock-related. In the second stage, we propose a heterogeneous community-based ensemble feature selection method (ComEFS), with the goal of identifying a subset of relevant predictors to be jointly used for ARQ forecasting. Thorough experiments are conducted on a real dataset to verify the effectiveness of our proposed method. The empirical results show that key predictors identified by ComEFS exhibit stronger predictive power compared to those identified by benchmark methods. This study provides insights about ARQ forecasting by selecting the right input. Selectively utilizing these predictive features can help improve the performance of downstream machine learning models and ultimately help investors avoid unreliable analyst ratings and financial loss.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001339","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting the analyst rating quality (ARQ), defined as whether a stock rating provided by an analyst can correctly foretell the stock movement, is crucial to fully leveraging the value of this information resource. This study develops a two-phase method to identify key predictors for ARQ forecasting. In the first stage, we conduct a thorough literature review to obtain a comprehensive list of candidate features, and organise them under three categories: analyst-related, rating-related, and stock-related. In the second stage, we propose a heterogeneous community-based ensemble feature selection method (ComEFS), with the goal of identifying a subset of relevant predictors to be jointly used for ARQ forecasting. Thorough experiments are conducted on a real dataset to verify the effectiveness of our proposed method. The empirical results show that key predictors identified by ComEFS exhibit stronger predictive power compared to those identified by benchmark methods. This study provides insights about ARQ forecasting by selecting the right input. Selectively utilizing these predictive features can help improve the performance of downstream machine learning models and ultimately help investors avoid unreliable analyst ratings and financial loss.

识别分析师评级质量的预测因素:一种集成特征选择方法
预测分析师评级质量(ARQ),即分析师提供的股票评级是否能够正确预测股票走势,对于充分利用这一信息资源的价值至关重要。本研究提出了一种两阶段方法来确定ARQ预测的关键预测因子。在第一阶段,我们进行彻底的文献综述,以获得候选特征的全面列表,并将其分为三类:分析师相关,评级相关和股票相关。在第二阶段,我们提出了一种基于异构社区的集成特征选择方法(ComEFS),目标是识别相关预测因子子集,共同用于ARQ预测。在一个真实数据集上进行了彻底的实验,以验证我们提出的方法的有效性。实证结果表明,ComEFS识别的关键预测因子比基准方法识别的关键预测因子具有更强的预测能力。该研究通过选择正确的输入,为ARQ预测提供了见解。有选择地利用这些预测特征可以帮助提高下游机器学习模型的性能,最终帮助投资者避免不可靠的分析师评级和财务损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信