Chaos to fractals

Prasanth Pulinchery, Nishanth Pothyiodath, Udayanandan Kandoth Murkoth
{"title":"Chaos to fractals","authors":"Prasanth Pulinchery, Nishanth Pothyiodath, Udayanandan Kandoth Murkoth","doi":"10.21067/mpej.v7i1.7502","DOIUrl":null,"url":null,"abstract":"In undergraduate classrooms, while teaching chaos and fractals, it is taught as if there is no relation between these two. By using some non linear oscillators we demonstrate that there is a connection between chaos and fractals. By plotting the phase space diagrams of four nonlinear oscillators and using box counting method of finding the fractal dimension we established the chaotic nature of the nonlinear oscillators. The awareness that all chaotic systems are good fractals will add more insights to the concept of chaotic systems.","PeriodicalId":32065,"journal":{"name":"Momentum Physics Education Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momentum Physics Education Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21067/mpej.v7i1.7502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In undergraduate classrooms, while teaching chaos and fractals, it is taught as if there is no relation between these two. By using some non linear oscillators we demonstrate that there is a connection between chaos and fractals. By plotting the phase space diagrams of four nonlinear oscillators and using box counting method of finding the fractal dimension we established the chaotic nature of the nonlinear oscillators. The awareness that all chaotic systems are good fractals will add more insights to the concept of chaotic systems.
混沌到分形
在本科课堂上,当教授混沌和分形时,就好像这两者之间没有关系一样。通过使用一些非线性振荡器,我们证明了混沌和分形之间存在联系。通过绘制四个非线性振子的相空间图,并用盒计数法求出分形维数,建立了非线性振子混沌性质。意识到所有的混沌系统都是好的分形,将为混沌系统的概念增添更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信