Jiaan Yang, Peng Zhang, Wenxiang Cheng, Gang Wu, Q. Niu, Lan Yang, Shun Luo, Xianghua Lin, Lianshan Zhang
{"title":"Severe Acute Respiratory Syndrome Coronavirus 2 Epitope Mapping for Antibodies","authors":"Jiaan Yang, Peng Zhang, Wenxiang Cheng, Gang Wu, Q. Niu, Lan Yang, Shun Luo, Xianghua Lin, Lianshan Zhang","doi":"10.4049/immunohorizons.2200030","DOIUrl":null,"url":null,"abstract":"Epitope mapping of the interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Abs is challenging because of complexity in protein three-dimensional structures. Protein structure fingerprint technology was applied for epitope mapping of 44 SARS-CoV-2 Abs with three-dimensional structure complexes. The results defined how the epitopes were distributed on SARS-CoV-2 and how the patterns of six CDRs from Abs participated in neutralization. Also, the residue–residue recognition revealed that certain residues had higher frequencies on the interfaces between SARS-CoV-2 and Abs, and the activity correlated with the physicochemical properties of the residues at the interface. Thus, epitope mapping provides significant lead information for development of epitope-based designs for Abs, vaccines, and diagnostic reagents. This is a bioinformatics project of structural data analysis; no animals or cells were used.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"6 1","pages":"344 - 355"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2200030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Epitope mapping of the interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Abs is challenging because of complexity in protein three-dimensional structures. Protein structure fingerprint technology was applied for epitope mapping of 44 SARS-CoV-2 Abs with three-dimensional structure complexes. The results defined how the epitopes were distributed on SARS-CoV-2 and how the patterns of six CDRs from Abs participated in neutralization. Also, the residue–residue recognition revealed that certain residues had higher frequencies on the interfaces between SARS-CoV-2 and Abs, and the activity correlated with the physicochemical properties of the residues at the interface. Thus, epitope mapping provides significant lead information for development of epitope-based designs for Abs, vaccines, and diagnostic reagents. This is a bioinformatics project of structural data analysis; no animals or cells were used.